BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 16739223)

  • 1. Effect of genipin-crosslinked chitin-chitosan scaffolds with hydroxyapatite modifications on the cultivation of bovine knee chondrocytes.
    Kuo YC; Lin CY
    Biotechnol Bioeng; 2006 Sep; 95(1):132-44. PubMed ID: 16739223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.
    Yan LP; Wang YJ; Ren L; Wu G; Caridade SG; Fan JB; Wang LY; Ji PH; Oliveira JM; Oliveira JT; Mano JF; Reis RL
    J Biomed Mater Res A; 2010 Nov; 95(2):465-75. PubMed ID: 20648541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds.
    Kuo YC; Ku IN
    Biomacromolecules; 2008 Oct; 9(10):2662-9. PubMed ID: 18771317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-engineered polyethylene oxide/chitosan scaffolds as potential substitutes for articular cartilage.
    Kuo YC; Hsu YR
    J Biomed Mater Res A; 2009 Oct; 91(1):277-87. PubMed ID: 18980201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of gel concentration, human fibronectin, and cation supplement on the tissue-engineered cartilage.
    Kuo YC; Ku IN
    Biotechnol Prog; 2007; 23(1):238-45. PubMed ID: 17269694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds.
    Wang PY; Tsai WB
    J Biomater Sci Polym Ed; 2013; 24(5):507-19. PubMed ID: 23565864
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.
    Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new biodegradable polyester elastomer for cartilage tissue engineering.
    Kang Y; Yang J; Khan S; Anissian L; Ameer GA
    J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chondrogenesis in scaffolds with surface modification of elastin and poly-L-lysine.
    Kuo YC; Chung CY
    Colloids Surf B Biointerfaces; 2012 May; 93():85-91. PubMed ID: 22245318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique.
    Woodfield TB; Malda J; de Wijn J; Péters F; Riesle J; van Blitterswijk CA
    Biomaterials; 2004 Aug; 25(18):4149-61. PubMed ID: 15046905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering.
    Hoffmann B; Seitz D; Mencke A; Kokott A; Ziegler G
    J Mater Sci Mater Med; 2009 Jul; 20(7):1495-503. PubMed ID: 19259790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.
    Woodfield TB; Van Blitterswijk CA; De Wijn J; Sims TJ; Hollander AP; Riesle J
    Tissue Eng; 2005; 11(9-10):1297-311. PubMed ID: 16259586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage.
    Malda J; Woodfield TB; van der Vloodt F; Wilson C; Martens DE; Tramper J; van Blitterswijk CA; Riesle J
    Biomaterials; 2005 Jan; 26(1):63-72. PubMed ID: 15193881
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rheological, microstructural, and in vitro characterization of hybrid chitosan-polylactic acid/hydroxyapatite composites.
    Araújo AB; Lemos AF; Ferreira JM
    J Biomed Mater Res A; 2009 Mar; 88(4):916-22. PubMed ID: 18384164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genipin crosslinked chitosan/PEO nanofibrous scaffolds exhibiting an improved microenvironment for the regeneration of articular cartilage.
    Ching KY; Andriotis O; Sengers B; Stolz M
    J Biomater Appl; 2021 Sep; 36(3):503-516. PubMed ID: 33730922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the controlled-released TGF-beta 1 from chitosan microspheres on chondrocytes cultured in a collagen/chitosan/glycosaminoglycan scaffold.
    Lee JE; Kim KE; Kwon IC; Ahn HJ; Lee SH; Cho H; Kim HJ; Seong SC; Lee MC
    Biomaterials; 2004 Aug; 25(18):4163-73. PubMed ID: 15046906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cartilage regeneration by culturing chondrocytes in scaffolds grafted with TATVHL peptide.
    Kuo YC; Wang CC
    Colloids Surf B Biointerfaces; 2012 May; 93():235-40. PubMed ID: 22305121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and evaluation of scaffolds prepared from chitosan fibers for potential use in cartilage tissue engineering.
    Subramanian A; Lin HY; Vu D; Larsen G
    Biomed Sci Instrum; 2004; 40():117-22. PubMed ID: 15133945
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.