These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 16739719)

  • 1. Imaging Ca2+ signals in Xenopus oocytes.
    Dargan SL; Demuro A; Parker I
    Methods Mol Biol; 2006; 322():103-19. PubMed ID: 16739719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-dimensional resolution of elementary Ca2+ signals by simultaneous multi-focal imaging.
    Demuro A; Parker I
    Cell Calcium; 2008 Apr; 43(4):367-74. PubMed ID: 17716727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expressed ryanodine receptor can substitute for the inositol 1,4,5-trisphosphate receptor in Xenopus laevis oocytes during progesterone-induced maturation.
    Kobrinsky E; Ondrias K; Marks AR
    Dev Biol; 1995 Dec; 172(2):531-40. PubMed ID: 8612969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buffer kinetics shape the spatiotemporal patterns of IP3-evoked Ca2+ signals.
    Dargan SL; Parker I
    J Physiol; 2003 Dec; 553(Pt 3):775-88. PubMed ID: 14555715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing calcium signaling in cells by digitized wide-field and confocal fluorescent microscopy.
    Roe MW; Fiekers JF; Philipson LH; Bindokas VP
    Methods Mol Biol; 2006; 319():37-66. PubMed ID: 16719350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model-based method for estimating Ca2+ release fluxes from linescan images in Xenopus oocytes.
    Baran I; Popescu A
    Chaos; 2009 Sep; 19(3):037106. PubMed ID: 19792031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling Ca2+ signaling differentiation during oocyte maturation.
    Ullah G; Jung P; Machaca K
    Cell Calcium; 2007 Dec; 42(6):556-64. PubMed ID: 17349690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different signaling pathway between sphingosine-1-phosphate and lysophosphatidic acid in Xenopus oocytes: functional coupling of the sphingosine-1-phosphate receptor to PLC-xbeta in Xenopus oocytes.
    Noh SJ; Kim MJ; Shim S; Han JK
    J Cell Physiol; 1998 Aug; 176(2):412-23. PubMed ID: 9648929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total internal reflection fluorescence microscopy study of spiral Ca2+ waves in single heart cell.
    Bai Y; Tang A; Wang S; Zhu X
    J Microsc; 2008 Mar; 229(Pt 3):555-60. PubMed ID: 18331510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiphoton laser scanning microscopy as a tool for Xenopus oocyte research.
    Prouty AM; Wu J; Lin DT; Camacho P; Lechleiter JD
    Methods Mol Biol; 2006; 322():87-101. PubMed ID: 16739718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ca2+-dependence of the depolarization-inducible Na+ current of Xenopus oocytes.
    Bossi E; Centinaio E; Moriondo A; Peres A
    J Cell Physiol; 1998 Feb; 174(2):154-9. PubMed ID: 9428801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simplified model of cytosolic Ca2+ dynamics in the presence of one or several clusters of Ca2+ -release channels.
    Solovey G; Fraiman D; Pando B; Ponce Dawson S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041915. PubMed ID: 18999463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualization of the cytoskeleton in Xenopus oocytes and eggs by confocal immunofluorescence microscopy.
    Becker BE; Gard DL
    Methods Mol Biol; 2006; 322():69-86. PubMed ID: 16739717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of Na+ channel voltage sensitivity in Xenopus oocytes depends on Ca2+ mobilization.
    Charpentier G; Kado RT
    J Cell Physiol; 1999 Feb; 178(2):258-66. PubMed ID: 10048590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging single-channel calcium microdomains by total internal reflection microscopy.
    Demuro A; Parker I
    Biol Res; 2004; 37(4):675-9. PubMed ID: 15709697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of IP3 receptor channel clustering in Ca2+ wave propagation during oocyte maturation.
    Ullah A; Jung P; Ullah G; Machaca K
    Prog Mol Biol Transl Sci; 2014; 123():83-101. PubMed ID: 24560141
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of intracellular calcium elevations in Xenopus laevis oocytes: aequorin luminescence versus electrophysiology.
    Grygorczyk R; Feighner SD; Adam M; Liu KK; LeCouter JE; Dashkevicz MP; Hreniuk DL; Rydberg EH; Arena JP
    J Neurosci Methods; 1996 Jul; 67(1):19-25. PubMed ID: 8844521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Presence of inositol 1,4,5-trisphosphate receptor, calreticulin, and calsequestrin in eggs of sea urchins and Xenopus laevis.
    Parys JB; McPherson SM; Mathews L; Campbell KP; Longo FJ
    Dev Biol; 1994 Feb; 161(2):466-76. PubMed ID: 8313995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ transients associated with openings of inositol trisphosphate-gated channels in Xenopus oocytes.
    Parker I; Yao Y
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):663-8. PubMed ID: 8815201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging single-channel calcium microdomains.
    Demuro A; Parker I
    Cell Calcium; 2006; 40(5-6):413-22. PubMed ID: 17067668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.