These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 16739783)
1. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg. Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783 [TBL] [Abstract][Full Text] [Related]
2. Effect of an Intelligent Prosthesis (IP) on the walking ability of young transfemoral amputees: comparison of IP users with able-bodied people. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Machida K; Nakagawa A Am J Phys Med Rehabil; 2003 Jun; 82(6):447-51. PubMed ID: 12820787 [TBL] [Abstract][Full Text] [Related]
3. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study. Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012 [TBL] [Abstract][Full Text] [Related]
4. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee. Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251 [TBL] [Abstract][Full Text] [Related]
5. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism. Buckley JG; Spence WD; Solomonidis SE Arch Phys Med Rehabil; 1997 Mar; 78(3):330-3. PubMed ID: 9084360 [TBL] [Abstract][Full Text] [Related]
6. A comparison of energy expenditure by a high level trans-femoral amputee using the Intelligent Prosthesis and conventionally damped prosthetic limbs. Taylor MB; Clark E; Offord EA; Baxter C Prosthet Orthot Int; 1996 Aug; 20(2):116-21. PubMed ID: 8876005 [TBL] [Abstract][Full Text] [Related]
7. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
8. Energy expenditure of walking with prostheses: comparison of three amputation levels. Göktepe AS; Cakir B; Yilmaz B; Yazicioglu K Prosthet Orthot Int; 2010 Mar; 34(1):31-6. PubMed ID: 20196687 [TBL] [Abstract][Full Text] [Related]
9. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
10. The relationship between comfortable and most metabolically efficient walking speed in persons with unilateral above-knee amputation. Jaegers SM; Vos LD; Rispens P; Hof AL Arch Phys Med Rehabil; 1993 May; 74(5):521-5. PubMed ID: 8489363 [TBL] [Abstract][Full Text] [Related]
11. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints. Bellmann M; Schmalz T; Blumentritt S Arch Phys Med Rehabil; 2010 Apr; 91(4):644-52. PubMed ID: 20382300 [TBL] [Abstract][Full Text] [Related]
12. Bioenergetic comparison of a new energy-storing foot and SACH foot in traumatic below-knee vascular amputations. Casillas JM; Dulieu V; Cohen M; Marcer I; Didier JP Arch Phys Med Rehabil; 1995 Jan; 76(1):39-44. PubMed ID: 7811172 [TBL] [Abstract][Full Text] [Related]
13. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM; Scally AJ; Buckley JG Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391 [TBL] [Abstract][Full Text] [Related]
14. Comparison of energy cost in transtibial amputees using "prosthesis" and "crutches without prosthesis" for walking activities. Mohanty RK; Lenka P; Equebal A; Kumar R Ann Phys Rehabil Med; 2012 May; 55(4):252-62. PubMed ID: 22534430 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Fuenzalida Squella SA; Kannenberg A; Brandão Benetti  Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574 [TBL] [Abstract][Full Text] [Related]
16. Using a microprocessor knee (C-Leg) with appropriate foot transitioned individuals with dysvascular transfemoral amputations to higher performance levels: a longitudinal randomized clinical trial. Jayaraman C; Mummidisetty CK; Albert MV; Lipschutz R; Hoppe-Ludwig S; Mathur G; Jayaraman A J Neuroeng Rehabil; 2021 May; 18(1):88. PubMed ID: 34034753 [TBL] [Abstract][Full Text] [Related]
17. Carbohydrate and fat oxidation in persons with lower limb amputation during walking with different speeds. Gjovaag T; Mirtaheri P; Starholm IM Prosthet Orthot Int; 2018 Jun; 42(3):304-310. PubMed ID: 29119861 [TBL] [Abstract][Full Text] [Related]
18. Effect of amputation level on energy expenditure during overground walking by children with an amputation. Jeans KA; Browne RH; Karol LA J Bone Joint Surg Am; 2011 Jan; 93(1):49-56. PubMed ID: 21209268 [TBL] [Abstract][Full Text] [Related]
19. Subject-specific responses to an adaptive ankle prosthesis during incline walking. Lamers EP; Eveld ME; Zelik KE J Biomech; 2019 Oct; 95():109273. PubMed ID: 31431348 [TBL] [Abstract][Full Text] [Related]
20. Comparison of nonmicroprocessor knee mechanism versus C-Leg on Prosthesis Evaluation Questionnaire, stumbles, falls, walking tests, stair descent, and knee preference. Kahle JT; Highsmith MJ; Hubbard SL J Rehabil Res Dev; 2008; 45(1):1-14. PubMed ID: 18566922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]