BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16739799)

  • 1. Effects of sulfur dioxide and nitric oxide on mercury oxidation and reduction under homogeneous conditions.
    Zhao Y; Mann MD; Olson ES; Pavlish JH; Dunham GE
    J Air Waste Manag Assoc; 2006 May; 56(5):628-35. PubMed ID: 16739799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using bromine gas to enhance mercury removal from flue gas of coal-fired power plants.
    Liu SH; Yan NQ; Liu ZR; Qu Z; Wang HP; Chang SG; Miller C
    Environ Sci Technol; 2007 Feb; 41(4):1405-12. PubMed ID: 17593749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous oxidation of NO, SO2 and Hg0 from flue gas by pulsed corona discharge.
    Xu F; Luo Z; Cao W; Wang P; Wei B; Gao X; Fang M; Cen K
    J Environ Sci (China); 2009; 21(3):328-32. PubMed ID: 19634444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experiments on and mechanism of simultaneous removal of Hg0, SO2 and NO from flus gas using NaClO2 solution.
    Zhao Y; Ma X; Liu S; Yao J
    Environ Technol; 2009 Mar; 30(3):277-82. PubMed ID: 19438060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of gold catalyst for mercury oxidation by chlorine.
    Zhao Y; Mann MD; Pavlish JH; Mibeck BA; Dunham GE; Olson ES
    Environ Sci Technol; 2006 Mar; 40(5):1603-8. PubMed ID: 16568776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived systems.
    Niksa S; Helble JJ; Fujiwara N
    Environ Sci Technol; 2001 Sep; 35(18):3701-6. PubMed ID: 11783648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regenerable cobalt oxide loaded magnetosphere catalyst from fly ash for mercury removal in coal combustion flue gas.
    Yang J; Zhao Y; Zhang J; Zheng C
    Environ Sci Technol; 2014 Dec; 48(24):14837-43. PubMed ID: 25403026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of selective catalytic reduction impact on mercury speciation under simulated NOx emission control conditions.
    Lee CW; Srivastava RK; Ghorishi SB; Hastings TW; Stevens FM
    J Air Waste Manag Assoc; 2004 Dec; 54(12):1560-6. PubMed ID: 15648394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.
    Lee CW; Serre SD; Zhao Y; Lee SJ; Hastings TW
    J Air Waste Manag Assoc; 2008 Apr; 58(4):484-93. PubMed ID: 18422035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding mercury transformations in coal-fired power plants: evaluation of homogeneous Hg oxidation mechanisms.
    Krishnakumar B; Helble JJ
    Environ Sci Technol; 2007 Nov; 41(22):7870-5. PubMed ID: 18075101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas.
    Li Y; Murphy PD; Wu CY; Powers KW; Bonzongo JC
    Environ Sci Technol; 2008 Jul; 42(14):5304-9. PubMed ID: 18754385
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.
    Li H; Wu CY; Li Y; Li L; Zhao Y; Zhang J
    J Hazard Mater; 2012 Dec; 243():117-23. PubMed ID: 23131500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Removal of NO and Hg0 in flue gas using alkaline absorption enhanced by non-thermal plasma].
    Luo HJ; Zhu TL; Wang MY
    Huan Jing Ke Xue; 2010 Jun; 31(6):1682-7. PubMed ID: 20698290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous control of Hg0, SO2, and NOx by novel oxidized calcium-based sorbents.
    Ghorishi SB; Singer CF; Jozewicz WS; Sedman CB; Srivastava RK
    J Air Waste Manag Assoc; 2002 Mar; 52(3):273-8. PubMed ID: 11924858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of oxy-combustion flue gas on mercury oxidation.
    Fernández-Miranda N; Lopez-Anton MA; Díaz-Somoano M; Martínez-Tarazona MR
    Environ Sci Technol; 2014 Jun; 48(12):7164-70. PubMed ID: 24877895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases.
    Lee CW; Srivastava RK; Ghorishi SB; Karwowski J; Hastings TW; Hirschi JC
    J Air Waste Manag Assoc; 2006 May; 56(5):643-9. PubMed ID: 16739801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.
    Li H; Zhang W; Wang J; Yang Z; Li L; Shih K
    Waste Manag; 2018 Apr; 74():253-259. PubMed ID: 29229180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of temperature and SO
    Royko M; Galloway B; Meeks ND; Padak B
    J Environ Sci (China); 2019 May; 79():67-73. PubMed ID: 30784465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas.
    Yan N; Chen W; Chen J; Qu Z; Guo Y; Yang S; Jia J
    Environ Sci Technol; 2011 Jul; 45(13):5725-30. PubMed ID: 21662986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bromine chloride as an oxidant to improve elemental mercury removal from coal-fired flue gas.
    Qu Z; Yan N; Liu P; Chi Y; Jia J
    Environ Sci Technol; 2009 Nov; 43(22):8610-5. PubMed ID: 20028060
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.