BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 16739968)

  • 1. Statistical correlation of spectroscopic analysis and enzymatic hydrolysis of poplar samples.
    Laureano-Perez L; Dale BE; Zhu L; O'Dwyer JP; Holtzapple M
    Biotechnol Prog; 2006; 22(3):835-41. PubMed ID: 16739968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover.
    Laureano-Perez L; Teymouri F; Alizadeh H; Dale BE
    Appl Biochem Biotechnol; 2005; 121-124():1081-99. PubMed ID: 15930583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.
    Kumar R; Mago G; Balan V; Wyman CE
    Bioresour Technol; 2009 Sep; 100(17):3948-62. PubMed ID: 19362819
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural features affecting biomass enzymatic digestibility.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2008 Jun; 99(9):3817-28. PubMed ID: 17826088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple linear regression model for predicting biomass digestibility from structural features.
    Zhu L; O'Dwyer JP; Chang VS; Granda CB; Holtzapple MT
    Bioresour Technol; 2010 Jul; 101(13):4971-9. PubMed ID: 19962880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis.
    Hsu TC; Guo GL; Chen WH; Hwang WS
    Bioresour Technol; 2010 Jul; 101(13):4907-13. PubMed ID: 19926476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multivariate statistical analysis of X-ray data from cellulose: a new method to determine degree of crystallinity and predict hydrolysis rates.
    Bansal P; Hall M; Realff MJ; Lee JH; Bommarius AS
    Bioresour Technol; 2010 Jun; 101(12):4461-71. PubMed ID: 20172714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification.
    Li C; Knierim B; Manisseri C; Arora R; Scheller HV; Auer M; Vogel KP; Simmons BA; Singh S
    Bioresour Technol; 2010 Jul; 101(13):4900-6. PubMed ID: 19945861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of wood density and chemical composition by means of diffuse reflectance mid-infrared Fourier transform (DRIFT-MIR) spectroscopy.
    Nuopponen MH; Birch GM; Sykes RJ; Lee SJ; Stewart D
    J Agric Food Chem; 2006 Jan; 54(1):34-40. PubMed ID: 16390174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ FT-IR microscopic study on enzymatic treatment of poplar wood cross-sections.
    Gierlinger N; Goswami L; Schmidt M; Burgert I; Coutand C; Rogge T; Schwanninger M
    Biomacromolecules; 2008 Aug; 9(8):2194-201. PubMed ID: 18636773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation and characterization of forage Sorghum as feedstock for fermentable sugar production.
    Corredor DY; Salazar JM; Hohn KL; Bean S; Bean B; Wang D
    Appl Biochem Biotechnol; 2009 Jul; 158(1):164-79. PubMed ID: 18754081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy].
    Jiang ZH; Fei BH; Yang Z
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Mar; 27(3):435-8. PubMed ID: 17554892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of crystallinity of cellulose on the rate of reducing sugars production by heterogeneous enzymatic hydrolysis.
    Al-Zuhair S
    Bioresour Technol; 2008 Jul; 99(10):4078-85. PubMed ID: 17935980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis and characterization of lignocellulosic biomass exposed to electron beam irradiation.
    Karthika K; Arun AB; Rekha PD
    Carbohydr Polym; 2012 Oct; 90(2):1038-45. PubMed ID: 22840037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling.
    Robinson AR; Mansfield SD
    Plant J; 2009 May; 58(4):706-14. PubMed ID: 19175772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis.
    Cheng G; Varanasi P; Li C; Liu H; Melnichenko YB; Simmons BA; Kent MS; Singh S
    Biomacromolecules; 2011 Apr; 12(4):933-41. PubMed ID: 21361369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced enzymatic hydrolysis and structural features of corn stover by FeCl3 pretreatment.
    Liu L; Sun J; Li M; Wang S; Pei H; Zhang J
    Bioresour Technol; 2009 Dec; 100(23):5853-8. PubMed ID: 19581085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of lignin-rich residues remaining after continuous super-critical water hydrolysis of poplar wood (Populus albaglandulosa) for conversion to fermentable sugars.
    Moon SJ; Eom IY; Kim JY; Kim TS; Lee SM; Choi IG; Choi JW
    Bioresour Technol; 2011 May; 102(10):5912-6. PubMed ID: 21435868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants.
    Papa G; Varanasi P; Sun L; Cheng G; Stavila V; Holmes B; Simmons BA; Adani F; Singh S
    Bioresour Technol; 2012 Aug; 117():352-9. PubMed ID: 22634318
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.