BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16740253)

  • 1. The good, the bad and the ugly in oxygen-sensing: ROS, cytochromes and prolyl-hydroxylases.
    Acker T; Fandrey J; Acker H
    Cardiovasc Res; 2006 Jul; 71(2):195-207. PubMed ID: 16740253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular oxygen sensing need in CNS function: physiological and pathological implications.
    Acker T; Acker H
    J Exp Biol; 2004 Aug; 207(Pt 18):3171-88. PubMed ID: 15299039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxygen sensing signal cascade under the influence of reactive oxygen species.
    Acker H
    Philos Trans R Soc Lond B Biol Sci; 2005 Dec; 360(1464):2201-10. PubMed ID: 16321790
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-sensing under the influence of nitric oxide.
    Berchner-Pfannschmidt U; Tug S; Kirsch M; Fandrey J
    Cell Signal; 2010 Mar; 22(3):349-56. PubMed ID: 19861159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADPH oxidase-mitochondria axis-derived ROS mediate arsenite-induced HIF-1α stabilization by inhibiting prolyl hydroxylases activity.
    Li YN; Xi MM; Guo Y; Hai CX; Yang WL; Qin XJ
    Toxicol Lett; 2014 Jan; 224(2):165-74. PubMed ID: 24188932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stabilization of hypoxia-inducible factor-1alpha protein in hypoxia occurs independently of mitochondrial reactive oxygen species production.
    Chua YL; Dufour E; Dassa EP; Rustin P; Jacobs HT; Taylor CT; Hagen T
    J Biol Chem; 2010 Oct; 285(41):31277-84. PubMed ID: 20675386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial regulation of oxygen sensing.
    Chandel NS
    Adv Exp Med Biol; 2010; 661():339-54. PubMed ID: 20204741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes.
    Wong BW; Kuchnio A; Bruning U; Carmeliet P
    Trends Biochem Sci; 2013 Jan; 38(1):3-11. PubMed ID: 23200187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for a stereoelectronic effect in human oxygen sensing.
    Loenarz C; Mecinović J; Chowdhury R; McNeill LA; Flashman E; Schofield CJ
    Angew Chem Int Ed Engl; 2009; 48(10):1784-7. PubMed ID: 19180614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling.
    Berra E; Ginouvès A; Pouysségur J
    EMBO Rep; 2006 Jan; 7(1):41-5. PubMed ID: 16391536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolyl hydroxylases 2 and 3 act in gliomas as protective negative feedback regulators of hypoxia-inducible factors.
    Henze AT; Riedel J; Diem T; Wenner J; Flamme I; Pouyseggur J; Plate KH; Acker T
    Cancer Res; 2010 Jan; 70(1):357-66. PubMed ID: 20028863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling.
    Pientka FK; Hu J; Schindler SG; Brix B; Thiel A; Jöhren O; Fandrey J; Berchner-Pfannschmidt U; Depping R
    J Cell Sci; 2012 Nov; 125(Pt 21):5168-76. PubMed ID: 22946054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia.
    Berra E; Benizri E; Ginouvès A; Volmat V; Roux D; Pouysségur J
    EMBO J; 2003 Aug; 22(16):4082-90. PubMed ID: 12912907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HIF prolyl and asparaginyl hydroxylases in the biological response to intracellular O(2) levels.
    Masson N; Ratcliffe PJ
    J Cell Sci; 2003 Aug; 116(Pt 15):3041-9. PubMed ID: 12829734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-hypoxic activation of the negative regulatory feedback loop of prolyl-hydroxylase oxygen sensors.
    Tug S; Delos Reyes B; Fandrey J; Berchner-Pfannschmidt U
    Biochem Biophys Res Commun; 2009 Jul; 384(4):519-23. PubMed ID: 19427832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoxia-induced erythropoietin production: a paradigm for oxygen-regulated gene expression.
    Stockmann C; Fandrey J
    Clin Exp Pharmacol Physiol; 2006 Oct; 33(10):968-79. PubMed ID: 17002676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway.
    Kaelin WG; Ratcliffe PJ
    Mol Cell; 2008 May; 30(4):393-402. PubMed ID: 18498744
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Siah proteins, HIF prolyl hydroxylases, and the physiological response to hypoxia.
    Simon MC
    Cell; 2004 Jun; 117(7):851-3. PubMed ID: 15210106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prolyl hydroxylase domain enzyme 2 is the major player in regulating hypoxic responses in rheumatoid arthritis.
    Muz B; Larsen H; Madden L; Kiriakidis S; Paleolog EM
    Arthritis Rheum; 2012 Sep; 64(9):2856-67. PubMed ID: 22488178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway.
    Hirsilä M; Koivunen P; Xu L; Seeley T; Kivirikko KI; Myllyharju J
    FASEB J; 2005 Aug; 19(10):1308-10. PubMed ID: 15941769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.