These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 16740307)

  • 1. Biomineralization of calcium disilicide in porous polycaprolactone scaffolds.
    Seregin VV; Coffer JL
    Biomaterials; 2006 Sep; 27(27):4745-54. PubMed ID: 16740307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of calcium disilicide-induced calcification of crystalline silicon surfaces in simulated body fluid under zero bias.
    Seregin VV; Coffer JL
    J Biomed Mater Res A; 2008 Oct; 87(1):15-24. PubMed ID: 18080303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of bioactive mesoporous wollastonite - Polycaprolactone composite scaffold.
    Wei J; Chen F; Shin JW; Hong H; Dai C; Su J; Liu C
    Biomaterials; 2009 Feb; 30(6):1080-8. PubMed ID: 19019424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes.
    Gorna K; Gogolewski S
    J Biomed Mater Res A; 2003 Dec; 67(3):813-27. PubMed ID: 14613229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and electrospinning of ε-polycaprolactone-bioactive glass hybrid biomaterials via a sol-gel process.
    Allo BA; Rizkalla AS; Mequanint K
    Langmuir; 2010 Dec; 26(23):18340-8. PubMed ID: 21050002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly porous polycaprolactone scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for bone regeneration.
    Gandolfi MG; Zamparini F; Degli Esposti M; Chiellini F; Fava F; Fabbri P; Taddei P; Prati C
    Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():341-361. PubMed ID: 31147007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers.
    Chouzouri G; Xanthos M
    Acta Biomater; 2007 Sep; 3(5):745-56. PubMed ID: 17392042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass.
    Li H; Du R; Chang J
    J Biomater Appl; 2005 Oct; 20(2):137-55. PubMed ID: 16183674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acceleration of biomimetic mineralization to apply in bone regeneration.
    Jayasuriya AC; Shah C; Ebraheim NA; Jayatissa AH
    Biomed Mater; 2008 Mar; 3(1):015003. PubMed ID: 18458490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate.
    Mavis B; Demirtaş TT; Gümüşderelioğlu M; Gündüz G; Colak U
    Acta Biomater; 2009 Oct; 5(8):3098-111. PubMed ID: 19426840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method.
    Oh SH; Park IK; Kim JM; Lee JH
    Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cellular proliferation on dense and porous PCL scaffolds.
    Saşmazel HT; Gümüşderelioğlu M; Gürpinar A; Onur MA
    Biomed Mater Eng; 2008; 18(3):119-28. PubMed ID: 18725692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
    Rezwan K; Chen QZ; Blaker JJ; Boccaccini AR
    Biomaterials; 2006 Jun; 27(18):3413-31. PubMed ID: 16504284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics.
    Xu S; Lin K; Wang Z; Chang J; Wang L; Lu J; Ning C
    Biomaterials; 2008 Jun; 29(17):2588-96. PubMed ID: 18378303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoconductive and degradable electrospun nonwoven poly(epsilon-caprolactone)/CaO-SiO2 gel composite fabric.
    Seol YJ; Kim KH; Kim IA; Rhee SH
    J Biomed Mater Res A; 2010 Aug; 94(2):649-59. PubMed ID: 20213814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro structural changes in porous HA/beta-TCP scaffolds in simulated body fluid.
    Sánchez-Salcedo S; Balas F; Izquierdo-Barba I; Vallet-Regí M
    Acta Biomater; 2009 Sep; 5(7):2738-51. PubMed ID: 19394904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication and characterization of biodegradable HA/PHBV nanoparticle-polymer composite scaffolds.
    Jack KS; Velayudhan S; Luckman P; Trau M; Grøndahl L; Cooper-White J
    Acta Biomater; 2009 Sep; 5(7):2657-67. PubMed ID: 19375396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods of improving mechanical and biomedical properties of Ca-Si-based ceramics and scaffolds.
    Wu C
    Expert Rev Med Devices; 2009 May; 6(3):237-41. PubMed ID: 19419281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2.
    Rai B; Teoh SH; Hutmacher DW; Cao T; Ho KH
    Biomaterials; 2005 Jun; 26(17):3739-48. PubMed ID: 15621264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.