These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16740483)

  • 1. Structural basis for budding by the ESCRT-III factor CHMP3.
    Muzioł T; Pineda-Molina E; Ravelli RB; Zamborlini A; Usami Y; Göttlinger H; Weissenhorn W
    Dev Cell; 2006 Jun; 10(6):821-30. PubMed ID: 16740483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of the C-terminal domain of Vps28 reveals a conserved surface required for Vps20 recruitment.
    Pineda-Molina E; Belrhali H; Piefer AJ; Akula I; Bates P; Weissenhorn W
    Traffic; 2006 Aug; 7(8):1007-16. PubMed ID: 16749904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of human VPS37C, a component of endosomal sorting complex required for transport-I important for viral budding.
    Eastman SW; Martin-Serrano J; Chung W; Zang T; Bieniasz PD
    J Biol Chem; 2005 Jan; 280(1):628-36. PubMed ID: 15509564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for autoinhibition of ESCRT-III CHMP3.
    Lata S; Roessle M; Solomons J; Jamin M; Gottlinger HG; Svergun DI; Weissenhorn W
    J Mol Biol; 2008 May; 378(4):818-27. PubMed ID: 18395747
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Helical structures of ESCRT-III are disassembled by VPS4.
    Lata S; Schoehn G; Jain A; Pires R; Piehler J; Gottlinger HG; Weissenhorn W
    Science; 2008 Sep; 321(5894):1354-7. PubMed ID: 18687924
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for ESCRT-III protein autoinhibition.
    Bajorek M; Schubert HL; McCullough J; Langelier C; Eckert DM; Stubblefield WM; Uter NT; Myszka DG; Hill CP; Sundquist WI
    Nat Struct Mol Biol; 2009 Jul; 16(7):754-62. PubMed ID: 19525971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Release of autoinhibition converts ESCRT-III components into potent inhibitors of HIV-1 budding.
    Zamborlini A; Usami Y; Radoshitzky SR; Popova E; Palu G; Göttlinger H
    Proc Natl Acad Sci U S A; 2006 Dec; 103(50):19140-5. PubMed ID: 17146056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure/function analysis of four core ESCRT-III proteins reveals common regulatory role for extreme C-terminal domain.
    Shim S; Kimpler LA; Hanson PI
    Traffic; 2007 Aug; 8(8):1068-79. PubMed ID: 17547705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ESCRT-III recognition by VPS4 ATPases.
    Stuchell-Brereton MD; Skalicky JJ; Kieffer C; Karren MA; Ghaffarian S; Sundquist WI
    Nature; 2007 Oct; 449(7163):740-4. PubMed ID: 17928862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding.
    Effantin G; Dordor A; Sandrin V; Martinelli N; Sundquist WI; Schoehn G; Weissenhorn W
    Cell Microbiol; 2013 Feb; 15(2):213-26. PubMed ID: 23051622
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and disassembly of filaments formed by the ESCRT-III subunit Vps24.
    Ghazi-Tabatabai S; Saksena S; Short JM; Pobbati AV; Veprintsev DB; Crowther RA; Emr SD; Egelman EH; Williams RL
    Structure; 2008 Sep; 16(9):1345-56. PubMed ID: 18786397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two distinct modes of ESCRT-III recognition are required for VPS4 functions in lysosomal protein targeting and HIV-1 budding.
    Kieffer C; Skalicky JJ; Morita E; De Domenico I; Ward DM; Kaplan J; Sundquist WI
    Dev Cell; 2008 Jul; 15(1):62-73. PubMed ID: 18606141
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and function of the ESCRT-II-III interface in multivesicular body biogenesis.
    Im YJ; Wollert T; Boura E; Hurley JH
    Dev Cell; 2009 Aug; 17(2):234-43. PubMed ID: 19686684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b and functions in the endosomal sorting pathway.
    Horii M; Shibata H; Kobayashi R; Katoh K; Yorikawa C; Yasuda J; Maki M
    Biochem J; 2006 Nov; 400(1):23-32. PubMed ID: 16856878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural basis for ESCRT-III CHMP3 recruitment of AMSH.
    Solomons J; Sabin C; Poudevigne E; Usami Y; Hulsik DL; Macheboeuf P; Hartlieb B; Göttlinger H; Weissenhorn W
    Structure; 2011 Aug; 19(8):1149-59. PubMed ID: 21827950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of ESCRT-III.
    Lata S; Schoehn G; Solomons J; Pires R; Göttlinger HG; Weissenhorn W
    Biochem Soc Trans; 2009 Feb; 37(Pt 1):156-60. PubMed ID: 19143622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of Ist1 function and Ist1-Did2 interaction in the multivesicular body pathway and cytokinesis.
    Xiao J; Chen XW; Davies BA; Saltiel AR; Katzmann DJ; Xu Z
    Mol Biol Cell; 2009 Aug; 20(15):3514-24. PubMed ID: 19477918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human CHMP6, a myristoylated ESCRT-III protein, interacts directly with an ESCRT-II component EAP20 and regulates endosomal cargo sorting.
    Yorikawa C; Shibata H; Waguri S; Hatta K; Horii M; Katoh K; Kobayashi T; Uchiyama Y; Maki M
    Biochem J; 2005 Apr; 387(Pt 1):17-26. PubMed ID: 15511219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ESCRT-III family members stimulate Vps4 ATPase activity directly or via Vta1.
    Azmi IF; Davies BA; Xiao J; Babst M; Xu Z; Katzmann DJ
    Dev Cell; 2008 Jan; 14(1):50-61. PubMed ID: 18194652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural basis of Vta1 function in the multivesicular body sorting pathway.
    Xiao J; Xia H; Zhou J; Azmi IF; Davies BA; Katzmann DJ; Xu Z
    Dev Cell; 2008 Jan; 14(1):37-49. PubMed ID: 18194651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.