BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 16740497)

  • 21. Transpiration-induced axial and radial tension gradients in trunks of Douglas-fir trees.
    Domec JC; Meinzer FC; Gartner BL; Woodruff D
    Tree Physiol; 2006 Mar; 26(3):275-84. PubMed ID: 16356900
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of nutrition and soil water availability on water use in a Norway spruce stand.
    Phillips N; Bergh J; Oren R; Linder S
    Tree Physiol; 2001 Aug; 21(12-13):851-60. PubMed ID: 11498332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating water use by sugar maple trees: considerations when using heat-pulse methods in trees with deep functional sapwood.
    Pausch RC; Grote EE; Dawson TE
    Tree Physiol; 2000 Mar; 20(4):217-227. PubMed ID: 12651458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Radial variation and time lag of sap flow of Populus gansuensis in Minqin Oasis, Northwest].
    Dang HZ; Yang WB; Li W; Zhang YY; Li CL
    Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2501-10. PubMed ID: 25757298
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand.
    Tarvainen L; Räntfors M; Wallin G
    Tree Physiol; 2014 May; 34(5):488-502. PubMed ID: 24878562
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining sap flow and eddy covariance approaches to derive stomatal and non-stomatal O3 fluxes in a forest stand.
    Nunn AJ; Cieslik S; Metzger U; Wieser G; Matyssek R
    Environ Pollut; 2010 Jun; 158(6):2014-22. PubMed ID: 20056523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].
    Lyu JL; He QY; Yan MJ; Li GQ; Du S
    Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):725-731. PubMed ID: 29722212
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Characteristics of dominant tree species stem sap flow and their relationships with environmental factors in a mixed conifer-broadleaf forest in Dinghushan, Guangdong Province of South China].
    Huang DW; Zhang DQ; Zhou GY; Liu SZ; Otieno D; Li YL
    Ying Yong Sheng Tai Xue Bao; 2012 May; 23(5):1159-66. PubMed ID: 22919822
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Radial patterns of sap flow in woody stems of dominant and understory species: scaling errors associated with positioning of sensors.
    Nadezhdina N; Cermák J; Ceulemans R
    Tree Physiol; 2002 Sep; 22(13):907-18. PubMed ID: 12204847
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Canopy and hydraulic conductance in young, mature and old Douglas-fir trees.
    Phillips N; Bond BJ; McDowell NG; Ryan MG
    Tree Physiol; 2002 Feb; 22(2-3):205-11. PubMed ID: 11830417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variability with xylem depth in sap flow in trunks and branches of mature olive trees.
    Nadezhdina N; Nadezhdin V; Ferreira MI; Pitacco A
    Tree Physiol; 2007 Jan; 27(1):105-13. PubMed ID: 17169912
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaling Erica arborea transpiration from trees up to the stand using auxiliary micrometeorological information in a wax myrtle-tree heath cloud forest (La Gomera, Canary Islands).
    Regalado CM; Ritter A
    Tree Physiol; 2013 Sep; 33(9):973-85. PubMed ID: 24072518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stomatal conductance, transpiration and sap flow of tropical montane rain forest trees in the southern Ecuadorian Andes.
    Motzer T; Munz N; Küppers M; Schmitt D; Anhuf D
    Tree Physiol; 2005 Oct; 25(10):1283-93. PubMed ID: 16076777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of temporal patterns in vapor pressure deficit to explain spatial autocorrelation dynamics in tree transpiration.
    Adelman JD; Ewers BE; Mackay DS
    Tree Physiol; 2008 Apr; 28(4):647-58. PubMed ID: 18244950
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessing the thermal dissipation sap flux density method for monitoring cold season water transport in seasonally snow-covered forests.
    Chan AM; Bowling DR
    Tree Physiol; 2017 Jul; 37(7):984-995. PubMed ID: 28549168
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.
    Zhao H; Yang S; Guo X; Peng C; Gu X; Deng C; Chen L
    Tree Physiol; 2018 Feb; 38(2):276-286. PubMed ID: 29346677
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of water flux through tropical forest canopy trees: do universal rules apply?
    Meinzer FC; Goldstein G; Andrade JL
    Tree Physiol; 2001 Jan; 21(1):19-26. PubMed ID: 11260820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Sapflow characteristics of Kandelia obovata and their controlling factors in Zhangjiang estuary, China.].
    Yan GY; Feng JX; Yang SC; Lin GH
    Ying Yong Sheng Tai Xue Bao; 2016 Jul; 27(7):2048-2058. PubMed ID: 29737110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.