BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16740635)

  • 1. Neuregulins mediate calcium-induced glucose transport during muscle contraction.
    Cantó C; Chibalin AV; Barnes BR; Glund S; Suárez E; Ryder JW; Palacín M; Zierath JR; Zorzano A; Gumà A
    J Biol Chem; 2006 Aug; 281(31):21690-21697. PubMed ID: 16740635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contraction- and hypoxia-stimulated glucose transport is mediated by a Ca2+-dependent mechanism in slow-twitch rat soleus muscle.
    Wright DC; Geiger PC; Holloszy JO; Han DH
    Am J Physiol Endocrinol Metab; 2005 Jun; 288(6):E1062-6. PubMed ID: 15657088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of neuregulin/ErbB signaling by contractile activity in skeletal muscle.
    Lebrasseur NK; Coté GM; Miller TA; Fielding RA; Sawyer DB
    Am J Physiol Cell Physiol; 2003 May; 284(5):C1149-55. PubMed ID: 12519750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions.
    Wright DC; Hucker KA; Holloszy JO; Han DH
    Diabetes; 2004 Feb; 53(2):330-5. PubMed ID: 14747282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phorbol esters affect skeletal muscle glucose transport in a fiber type-specific manner.
    Wright DC; Geiger PC; Rheinheimer MJ; Han DH; Holloszy JO
    Am J Physiol Endocrinol Metab; 2004 Aug; 287(2):E305-9. PubMed ID: 15053989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exercise and suspension hypokinesia-induced alterations in mechanical properties of rat fast and slow-twitch skeletal muscles.
    Ertunc M; Atalay A; Yildirim M; Onur R
    Acta Physiol Hung; 2010 Sep; 97(3):316-25. PubMed ID: 20843770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle.
    Derave W; Ai H; Ihlemann J; Witters LA; Kristiansen S; Richter EA; Ploug T
    Diabetes; 2000 Aug; 49(8):1281-7. PubMed ID: 10923626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical stimulation induces fiber type-specific translocation of GLUT-4 to T tubules in skeletal muscle.
    Roy D; Jóhannsson E; Bonen A; Marette A
    Am J Physiol; 1997 Oct; 273(4):E688-94. PubMed ID: 9357796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential effects of GSNO and H2O2 on the Ca2+ sensitivity of the contractile apparatus of fast- and slow-twitch skeletal muscle fibers from the rat.
    Spencer T; Posterino GS
    Am J Physiol Cell Physiol; 2009 May; 296(5):C1015-23. PubMed ID: 19225165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ADP on slow-twitch muscle fibres of the rat: implications for muscle fatigue.
    Macdonald WA; Stephenson DG
    J Physiol; 2006 May; 573(Pt 1):187-98. PubMed ID: 16556653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Caffeine thresholds for contraction in electrophoretically typed, mechanically skinned muscle fibres from SHR and WKY rats.
    Bortolotto SK; Stephenson DG; Stephenson GM
    Pflugers Arch; 2001 Feb; 441(5):692-700. PubMed ID: 11294252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging role of neuregulin as a modulator of muscle metabolism.
    Gumà A; Martínez-Redondo V; López-Soldado I; Cantó C; Zorzano A
    Am J Physiol Endocrinol Metab; 2010 Apr; 298(4):E742-50. PubMed ID: 20028964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel role of neuregulin in skeletal muscle. Neuregulin stimulates glucose uptake, glucose transporter translocation, and transporter expression in muscle cells.
    Suárez E; Bach D; Cadefau J; Palacin M; Zorzano A; Gumá A
    J Biol Chem; 2001 May; 276(21):18257-64. PubMed ID: 11278386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vivo model for studying the dynamics of intracellular free calcium changes in slow- and fast-twitch muscle fibres.
    Bátkai S; Rácz IB; Ivanics T; Tóth A; Hamar J; Slaaf DW; Reneman RS; Ligeti L
    Pflugers Arch; 1999 Oct; 438(5):665-70. PubMed ID: 10555564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inositol 1,4,5-trisphosphate-sensitive Ca2+ release in rat fast- and slow-twitch skinned muscle fibres.
    Talon S; Huchet-Cadiou C; Léoty C
    Pflugers Arch; 1999 Nov; 438(6):804-16. PubMed ID: 10591069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of the effects of inorganic phosphate on caffeine-induced Ca2+ release in fast- and slow-twitch mammalian skeletal muscle.
    Posterino GS; Dunn SL
    Am J Physiol Cell Physiol; 2008 Jan; 294(1):C97-105. PubMed ID: 17959728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decay of Ca2+ and force transients in fast- and slow-twitch skeletal muscles from the rat, mouse and Etruscan shrew.
    Wetzel P; Gros G
    J Exp Biol; 1998 Feb; 201(Pt 3):375-84. PubMed ID: 9503643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-channel properties of the sarcoplasmic reticulum calcium-release channel in slow- and fast-twitch muscles of Rhesus monkeys.
    Bastide B; Mounier Y
    Pflugers Arch; 1998 Aug; 436(3):485-8. PubMed ID: 9644234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are tyrosine kinases involved in mediating contraction-stimulated muscle glucose transport?
    Wright DC; Geiger PC; Han DH; Holloszy JO
    Am J Physiol Endocrinol Metab; 2006 Jan; 290(1):E123-E128. PubMed ID: 16159907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sarcomere length dependence of the rate of tension redevelopment and submaximal tension in rat and rabbit skinned skeletal muscle fibres.
    McDonald KS; Wolff MR; Moss RL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):607-21. PubMed ID: 9218220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.