These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 16740668)

  • 21. Unique properties of ceria nanoparticles supported on metals: novel inverse ceria/copper catalysts for CO oxidation and the water-gas shift reaction.
    Senanayake SD; Stacchiola D; Rodriguez JA
    Acc Chem Res; 2013 Aug; 46(8):1702-11. PubMed ID: 23286528
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-organic cooperative catalysis in C-H and C-C bond activation and its concurrent recovery.
    Park YJ; Park JW; Jun CH
    Acc Chem Res; 2008 Feb; 41(2):222-34. PubMed ID: 18247521
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene cover-promoted metal-catalyzed reactions.
    Yao Y; Fu Q; Zhang YY; Weng X; Li H; Chen M; Jin L; Dong A; Mu R; Jiang P; Liu L; Bluhm H; Liu Z; Zhang SB; Bao X
    Proc Natl Acad Sci U S A; 2014 Dec; 111(48):17023-8. PubMed ID: 25404332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Shape-controlled nanostructures in heterogeneous catalysis.
    Zaera F
    ChemSusChem; 2013 Oct; 6(10):1797-820. PubMed ID: 24014476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clever Nanomaterials Fabrication Techniques Encounter Sustainable C1 Catalysis.
    Wang Y; Sun J; Tsubaki N
    Acc Chem Res; 2023 Sep; 56(17):2341-2353. PubMed ID: 37579494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular metal catalysts on supports: organometallic chemistry meets surface science.
    Serna P; Gates BC
    Acc Chem Res; 2014 Aug; 47(8):2612-20. PubMed ID: 25036259
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interfacially formed organized planar inorganic, polymeric and composite nanostructures.
    Khomutov GB
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):79-116. PubMed ID: 15571664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-selective modification of metallic nanoparticles.
    Hoang KNL; McClain SM; Meyer SM; Jalomo CA; Forney NB; Murphy CJ
    Chem Commun (Camb); 2022 Aug; 58(70):9728-9741. PubMed ID: 35975479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface Chemistry of Atomically Precise Coinage-Metal Nanoclusters: From Structural Control to Surface Reactivity and Catalysis.
    Yan J; Teo BK; Zheng N
    Acc Chem Res; 2018 Dec; 51(12):3084-3093. PubMed ID: 30433756
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamics of molecular interactions and chemical reactions at metal surfaces: testing the foundations of theory.
    Golibrzuch K; Bartels N; Auerbach DJ; Wodtke AM
    Annu Rev Phys Chem; 2015 Apr; 66():399-425. PubMed ID: 25580627
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finely controlled multimetallic nanocluster catalysts for solvent-free aerobic oxidation of hydrocarbons.
    Takahashi M; Koizumi H; Chun WJ; Kori M; Imaoka T; Yamamoto K
    Sci Adv; 2017 Jul; 3(7):e1700101. PubMed ID: 28782020
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tungsten and molybdenum oxide nanostructures: two-dimensional layers and nanoclusters.
    Surnev S; Netzer FP
    J Phys Condens Matter; 2022 Apr; 34(23):. PubMed ID: 35045403
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis.
    Astruc D; Lu F; Aranzaes JR
    Angew Chem Int Ed Engl; 2005 Dec; 44(48):7852-72. PubMed ID: 16304662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Surface confined metallosupramolecular architectures: formation and scanning tunneling microscopy characterization.
    Li SS; Northrop BH; Yuan QH; Wan LJ; Stang PJ
    Acc Chem Res; 2009 Feb; 42(2):249-59. PubMed ID: 19072706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metal Nanoparticles Immobilized on Molecularly Modified Surfaces: Versatile Catalytic Systems for Controlled Hydrogenation and Hydrogenolysis.
    Bordet A; Leitner W
    Acc Chem Res; 2021 May; 54(9):2144-2157. PubMed ID: 33822579
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis of Quasi-Bilayer Subnano Metal-Oxide Interfacial Cluster Catalysts for Advanced Catalysis.
    Chen S; Huang L; Sun Z; Cao L; Ying W; Shi X; Liu W; Gu J; Zheng X; Zhu J; Lin Y; Wei S; Lu J
    Small; 2020 Dec; 16(52):e2005571. PubMed ID: 33258310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.