BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16740926)

  • 1. Mutations and rearrangements in the genome of Sulfolobus solfataricus P2.
    Redder P; Garrett RA
    J Bacteriol; 2006 Jun; 188(12):4198-206. PubMed ID: 16740926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the catechol 2,3-dioxygenase gene locus in thermoacidophilic archaeon Sulfolobus solfataricus strain 98/2.
    Chae JC; Kim E; Bini E; Zylstra GJ
    Biochem Biophys Res Commun; 2007 Jun; 357(3):815-9. PubMed ID: 17451650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-autonomous mobile elements in the crenarchaeon Sulfolobus solfataricus.
    Redder P; She Q; Garrett RA
    J Mol Biol; 2001 Feb; 306(1):1-6. PubMed ID: 11178888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High spontaneous mutation rate in the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by transposable elements.
    Martusewitsch E; Sensen CW; Schleper C
    J Bacteriol; 2000 May; 182(9):2574-81. PubMed ID: 10762261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alport syndrome. Molecular genetic aspects.
    Hertz JM
    Dan Med Bull; 2009 Aug; 56(3):105-52. PubMed ID: 19728970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mercury resistance in the crenarchaeote Sulfolobus solfataricus.
    Schelert J; Drozda M; Dixit V; Dillman A; Blum P
    J Bacteriol; 2006 Oct; 188(20):7141-50. PubMed ID: 17015653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New insertion sequences of Sulfolobus: functional properties and implications for genome evolution in hyperthermophilic archaea.
    Blount ZD; Grogan DW
    Mol Microbiol; 2005 Jan; 55(1):312-25. PubMed ID: 15612937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diverse genome structures of Salmonella paratyphi C.
    Liu WQ; Liu GR; Li JQ; Xu GM; Qi D; He XY; Deng J; Zhang FM; Johnston RN; Liu SL
    BMC Genomics; 2007 Aug; 8():290. PubMed ID: 17718928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus.
    Szabó Z; Sani M; Groeneveld M; Zolghadr B; Schelert J; Albers SV; Blum P; Boekema EJ; Driessen AJ
    J Bacteriol; 2007 Jun; 189(11):4305-9. PubMed ID: 17416662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shuffling of Sulfolobus genomes by autonomous and non-autonomous mobile elements.
    Brügger K; Torarinsson E; Redder P; Chen L; Garrett RA
    Biochem Soc Trans; 2004 Apr; 32(Pt 2):179-83. PubMed ID: 15046567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV-inducible cellular aggregation of the hyperthermophilic archaeon Sulfolobus solfataricus is mediated by pili formation.
    Fröls S; Ajon M; Wagner M; Teichmann D; Zolghadr B; Folea M; Boekema EJ; Driessen AJ; Schleper C; Albers SV
    Mol Microbiol; 2008 Nov; 70(4):938-52. PubMed ID: 18990182
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IS1096-mediated DNA rearrangements play a key role in genome evolution of Mycobacterium smegmatis.
    Wang XM; Galamba A; Warner DF; Soetaert K; Merkel JS; Kalai M; Bifani P; Lefèvre P; Mizrahi V; Content J
    Tuberculosis (Edinb); 2008 Sep; 88(5):399-409. PubMed ID: 18439874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSO1450--a CAS1 protein from Sulfolobus solfataricus P2 with high affinity for RNA and DNA.
    Han D; Lehmann K; Krauss G
    FEBS Lett; 2009 Jun; 583(12):1928-32. PubMed ID: 19427858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome juggling by transposons: Tam3-induced rearrangements in Antirrhinum majus.
    Martin C; Lister C
    Dev Genet; 1989; 10(6):438-51. PubMed ID: 2557989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes.
    Studier FW; Daegelen P; Lenski RE; Maslov S; Kim JF
    J Mol Biol; 2009 Dec; 394(4):653-80. PubMed ID: 19765592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis.
    Snijders AP; Walther J; Peter S; Kinnman I; de Vos MG; van de Werken HJ; Brouns SJ; van der Oost J; Wright PC
    Proteomics; 2006 Mar; 6(5):1518-29. PubMed ID: 16447154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lack of strand-specific repair of UV-induced DNA lesions in three genes of the archaeon Sulfolobus solfataricus.
    Romano V; Napoli A; Salerno V; Valenti A; Rossi M; Ciaramella M
    J Mol Biol; 2007 Jan; 365(4):921-9. PubMed ID: 17113105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius.
    Mao D; Grogan DW
    J Bacteriol; 2017 Sep; 199(17):. PubMed ID: 28630130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonmutational mechanism of inheritance in the Archaeon
    Payne S; McCarthy S; Johnson T; North E; Blum P
    Proc Natl Acad Sci U S A; 2018 Nov; 115(48):12271-12276. PubMed ID: 30425171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the endonuclease SSO2001 from Sulfolobus solfataricus P2.
    Han D; Krauss G
    FEBS Lett; 2009 Feb; 583(4):771-6. PubMed ID: 19174159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.