BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 16740926)

  • 21. A novel Sulfolobus non-conjugative extrachromosomal genetic element capable of integration into the host genome and spreading in the presence of a fusellovirus.
    Wang Y; Duan Z; Zhu H; Guo X; Wang Z; Zhou J; She Q; Huang L
    Virology; 2007 Jun; 363(1):124-33. PubMed ID: 17331555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 5-fluorouracil forward mutation assay in Salmonella: determination of mutational target and spontaneous mutational spectra.
    Glaab WE; Mitchell LS; Miller JE; Vlasakova K; Skopek TR
    Mutat Res; 2005 Oct; 578(1-2):238-46. PubMed ID: 16143351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.
    Grogan DW; Carver GT; Drake JW
    Proc Natl Acad Sci U S A; 2001 Jul; 98(14):7928-33. PubMed ID: 11427720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interplay between primase and replication factor C in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Wu K; Lai X; Guo X; Hu J; Xiang X; Huang L
    Mol Microbiol; 2007 Feb; 63(3):826-37. PubMed ID: 17181784
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel genomic rearrangements in the BRCA1 gene detected in Greek breast/ovarian cancer patients.
    Armaou S; Konstantopoulou I; Anagnostopoulos T; Razis E; Boukovinas I; Xenidis N; Fountzilas G; Yannoukakos D
    Eur J Cancer; 2007 Jan; 43(2):443-53. PubMed ID: 17174087
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic mapping of the hyperthermophilic and acidophilic archaeon Sulfolobus solfataricus P2.
    Barry RC; Young MJ; Stedman KM; Dratz EA
    Electrophoresis; 2006 Jul; 27(14):2970-83. PubMed ID: 16721906
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A phylogenetic analysis of indel dynamics in the cotton genus.
    Grover CE; Yu Y; Wing RA; Paterson AH; Wendel JF
    Mol Biol Evol; 2008 Jul; 25(7):1415-28. PubMed ID: 18400789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutation and reversion frequencies of different Sulfolobus species and strains.
    Berkner S; Lipps G
    Extremophiles; 2008 Mar; 12(2):263-70. PubMed ID: 18176778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of O2 concentrations on Sulfolobus solfataricus P2.
    Simon G; Walther J; Zabeti N; Combet-Blanc Y; Auria R; van der Oost J; Casalot L
    FEMS Microbiol Lett; 2009 Oct; 299(2):255-60. PubMed ID: 19735462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mobile elements in archaeal genomes.
    Brügger K; Redder P; She Q; Confalonieri F; Zivanovic Y; Garrett RA
    FEMS Microbiol Lett; 2002 Jan; 206(2):131-41. PubMed ID: 11814653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crenarchaeal DNA damage-inducible transcription factor B paralogue TFB3 is a general activator of transcription.
    Paytubi S; White MF
    Mol Microbiol; 2009 Jun; 72(6):1487-99. PubMed ID: 19460096
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A spreadable, non-integrative and high copy number shuttle vector for Sulfolobus solfataricus based on the genetic element pSSVx from Sulfolobus islandicus.
    Aucelli T; Contursi P; Girfoglio M; Rossi M; Cannio R
    Nucleic Acids Res; 2006; 34(17):e114. PubMed ID: 16971457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ss-LrpB, a transcriptional regulator from Sulfolobus solfataricus, regulates a gene cluster with a pyruvate ferredoxin oxidoreductase-encoding operon and permease genes.
    Peeters E; Albers SV; Vassart A; Driessen AJ; Charlier D
    Mol Microbiol; 2009 Feb; 71(4):972-88. PubMed ID: 19170871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome-scale reconstruction and analysis of the metabolic network in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Ulas T; Riemer SA; Zaparty M; Siebers B; Schomburg D
    PLoS One; 2012; 7(8):e43401. PubMed ID: 22952675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How genomes rearrange: genome comparison within bacteria Neisseria suggests roles for mobile elements in formation of complex genome polymorphisms.
    Kawai M; Nakao K; Uchiyama I; Kobayashi I
    Gene; 2006 Nov; 383():52-63. PubMed ID: 16949772
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The regulatory function of N-terminal AAA+ ATPase domain of eukaryote-like archaeal Orc1/Cdc6 protein during DNA replication initiation.
    He ZG; Feng Y; Wang J; Jiang PX
    Arch Biochem Biophys; 2008 Mar; 471(2):176-83. PubMed ID: 18237540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [DNA-based transposable elements as potential source of genome rearrangements in vertebrates].
    Koga A
    Tanpakushitsu Kakusan Koso; 2004 Oct; 49(13):2103-10. PubMed ID: 15508708
    [No Abstract]   [Full Text] [Related]  

  • 38. The archaeal XPB protein is a ssDNA-dependent ATPase with a novel partner.
    Richards JD; Cubeddu L; Roberts J; Liu H; White MF
    J Mol Biol; 2008 Feb; 376(3):634-44. PubMed ID: 18177890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Mutagenesis-Enabled Global Proteomic Study of Metabolic and Carbon Source Implications in Mutant Thermoacidophillic Archaeon Sulfolobus solfataricus PBL2025.
    Qiu W; Pham TK; Zou X; Ow SY; Wright PC
    J Proteome Res; 2017 Jul; 16(7):2370-2383. PubMed ID: 28514846
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome.
    Wu C; Wang S; Zhang HB
    Genomics; 2006 Oct; 88(4):394-406. PubMed ID: 16806804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.