BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 16740930)

  • 1. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis.
    Akers JC; Tan M
    J Bacteriol; 2006 Jun; 188(12):4236-43. PubMed ID: 16740930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions.
    Carlson JH; Wood H; Roshick C; Caldwell HD; McClarty G
    Mol Microbiol; 2006 Mar; 59(6):1678-91. PubMed ID: 16553875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tryptophan Operon Diversity Reveals Evolutionary Trends among Geographically Disparate Chlamydia trachomatis Ocular and Urogenital Strains Affecting Tryptophan Repressor and Synthase Function.
    Bommana S; Somboonna N; Richards G; Tarazkar M; Dean D
    mBio; 2021 May; 12(3):. PubMed ID: 33975934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A bipartite iron-dependent transcriptional regulation of the tryptophan salvage pathway in
    Pokorzynski ND; Brinkworth AJ; Carabeo R
    Elife; 2019 Apr; 8():. PubMed ID: 30938288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of tryptophan synthase gene expression in Chlamydia trachomatis.
    Wood H; Fehlner-Gardner C; Berry J; Fischer E; Graham B; Hackstadt T; Roshick C; McClarty G
    Mol Microbiol; 2003 Sep; 49(5):1347-59. PubMed ID: 12940992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron-dependent repressor YtgR is a tryptophan-dependent attenuator of the trpRBA operon in Chlamydia trachomatis.
    Pokorzynski ND; Hatch ND; Ouellette SP; Carabeo RA
    Nat Commun; 2020 Dec; 11(1):6430. PubMed ID: 33353937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical Persistence of Chlamydia trachomatis Sexually Transmitted Strains Involves Novel Mutations in the Functional αββα Tetramer of the Tryptophan Synthase Operon.
    Somboonna N; Ziklo N; Ferrin TE; Hyuk Suh J; Dean D
    mBio; 2019 Jul; 10(4):. PubMed ID: 31311884
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Transformation of a
    O'Neill CE; Skilton RJ; Pearson SA; Filardo S; Andersson P; Clarke IN
    Front Cell Infect Microbiol; 2018; 8():434. PubMed ID: 30619780
    [No Abstract]   [Full Text] [Related]  

  • 9. Ammonia generation by tryptophan synthase drives a key genetic difference between genital and ocular
    Sherchand SP; Aiyar A
    Proc Natl Acad Sci U S A; 2019 Jun; 116(25):12468-12477. PubMed ID: 31097582
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic diversity of the tryptophan pathway in chlamydiae: reductive evolution and a novel operon for tryptophan recapture.
    Xie G; Bonner CA; Jensen RA
    Genome Biol; 2002 Aug; 3(9):research0051. PubMed ID: 12225590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of integration host factor (IHF) binding upstream of the cysteine-rich protein operon (omcAB) promoter of Chlamydia trachomatis LGV serovar L2.
    Zhong J; Douglas AL; Hatch TP
    Mol Microbiol; 2001 Jul; 41(2):451-62. PubMed ID: 11489130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nucleotide sequence and expression of Escherichia coli trpR, the structural gene for the trp aporepressor.
    Gunsalus RP; Yanofsky C
    Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7117-21. PubMed ID: 7012834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions.
    Wilson AC; Tan M
    J Bacteriol; 2004 Jun; 186(11):3384-91. PubMed ID: 15150223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing the dynamic control space of mammalian transcription devices by combinatorial assembly of homologous regulatory elements from different bacterial species.
    Bacchus W; Weber W; Fussenegger M
    Metab Eng; 2013 Jan; 15():144-50. PubMed ID: 23178502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis.
    Wilson AC; Tan M
    J Bacteriol; 2002 Dec; 184(23):6566-71. PubMed ID: 12426345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CT406 encodes a chlamydial ortholog of NrdR, a repressor of ribonucleotide reductase.
    Case ED; Akers JC; Tan M
    J Bacteriol; 2011 Sep; 193(17):4396-404. PubMed ID: 21725017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tryptophan repressor sequence is highly conserved among the Enterobacteriaceae.
    Arvidson DN; Arvidson CG; Lawson CL; Miner J; Adams C; Youderian P
    Nucleic Acids Res; 1994 May; 22(10):1821-9. PubMed ID: 8208606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis defining human Chlamydia trachomatis tissue tropism. A possible role for tryptophan synthase.
    Fehlner-Gardiner C; Roshick C; Carlson JH; Hughes S; Belland RJ; Caldwell HD; McClarty G
    J Biol Chem; 2002 Jul; 277(30):26893-903. PubMed ID: 12011099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes.
    Rosario CJ; Tan M
    Mol Microbiol; 2012 Jun; 84(6):1097-107. PubMed ID: 22624851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of tryptophan in
    Wang L; Hou Y; Yuan H; Chen H
    Front Cell Infect Microbiol; 2022; 12():931653. PubMed ID: 35982780
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.