These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 16741156)
1. Flow-dependent remodeling of small arteries in mice deficient for tissue-type transglutaminase: possible compensation by macrophage-derived factor XIII. Bakker EN; Pistea A; Spaan JA; Rolf T; de Vries CJ; van Rooijen N; Candi E; VanBavel E Circ Res; 2006 Jul; 99(1):86-92. PubMed ID: 16741156 [TBL] [Abstract][Full Text] [Related]
2. Small artery remodeling and erythrocyte deformability in L-NAME-induced hypertension: role of transglutaminases. Pistea A; Bakker EN; Spaan JA; Hardeman MR; van Rooijen N; VanBavel E J Vasc Res; 2008; 45(1):10-8. PubMed ID: 17898543 [TBL] [Abstract][Full Text] [Related]
3. Small artery remodeling depends on tissue-type transglutaminase. Bakker EN; Buus CL; Spaan JA; Perree J; Ganga A; Rolf TM; Sorop O; Bramsen LH; Mulvany MJ; Vanbavel E Circ Res; 2005 Jan; 96(1):119-26. PubMed ID: 15550691 [TBL] [Abstract][Full Text] [Related]
4. Tissue transglutaminase and factor XIII in cartilage and bone remodeling. Aeschlimann D; Mosher D; Paulsson M Semin Thromb Hemost; 1996; 22(5):437-43. PubMed ID: 8989828 [TBL] [Abstract][Full Text] [Related]
5. Monocytes of patients congenitally deficient in plasma factor XIII lack factor XIII subunit a antigen and transglutaminase activity. Muszbek L; Adány R; Kávai M; Boda Z; Lopaciuk S Thromb Haemost; 1988 Apr; 59(2):231-5. PubMed ID: 2898817 [TBL] [Abstract][Full Text] [Related]
6. Blood flow-dependent arterial remodelling is facilitated by inflammation but directed by vascular tone. Bakker EN; Matlung HL; Bonta P; de Vries CJ; van Rooijen N; Vanbavel E Cardiovasc Res; 2008 May; 78(2):341-8. PubMed ID: 18299286 [TBL] [Abstract][Full Text] [Related]
7. Possible role of factor XIII subunit A in Fcgamma and complement receptor-mediated phagocytosis. Sárváry A; Szucs S; Balogh I; Becsky A; Bárdos H; Kávai M; Seligsohn U; Egbring R; Lopaciuk S; Muszbek L; Adány R Cell Immunol; 2004 Apr; 228(2):81-90. PubMed ID: 15219459 [TBL] [Abstract][Full Text] [Related]
8. Transglutaminase activity regulates atherosclerotic plaque composition at locations exposed to oscillatory shear stress. Matlung HL; Neele AE; Groen HC; van Gaalen K; Tuna BG; van Weert A; de Vos J; Wentzel JJ; Hoogenboezem M; van Buul JD; VanBavel E; Bakker EN Atherosclerosis; 2012 Oct; 224(2):355-62. PubMed ID: 22921425 [TBL] [Abstract][Full Text] [Related]
9. Depletion of macrophages in mice results in higher dengue virus titers and highlights the role of macrophages for virus control. Fink K; Ng C; Nkenfou C; Vasudevan SG; van Rooijen N; Schul W Eur J Immunol; 2009 Oct; 39(10):2809-21. PubMed ID: 19637226 [TBL] [Abstract][Full Text] [Related]
10. Tissue transglutaminase overexpression in the brain potentiates calcium-induced hippocampal damage. Tucholski J; Roth KA; Johnson GV J Neurochem; 2006 Apr; 97(2):582-94. PubMed ID: 16539654 [TBL] [Abstract][Full Text] [Related]
11. Immunoassay of in vitro activated human tissue transglutaminase. Wolf J; Lachmann I; Wagner U; Osman A; Mothes T Anal Biochem; 2011 Apr; 411(1):10-5. PubMed ID: 21146490 [TBL] [Abstract][Full Text] [Related]
12. Validated sandwich ELISA for the quantification of tissue transglutaminase in tissue homogenates and cell lysates of multiple species. Brevé JJ; Drukarch B; van Strien M; van Dam AM J Immunol Methods; 2008 Mar; 332(1-2):142-50. PubMed ID: 18279887 [TBL] [Abstract][Full Text] [Related]
13. Factor XIII of blood coagulation as a nuclear crosslinking enzyme. Adány R; Bárdos H; Antal M; Módis L; Sárváry A; Szücs S; Balogh I Thromb Haemost; 2001 May; 85(5):845-51. PubMed ID: 11372678 [TBL] [Abstract][Full Text] [Related]
14. Osteopontin upregulation and polymerization by transglutaminase 2 in calcified arteries of Matrix Gla protein-deficient mice. Kaartinen MT; Murshed M; Karsenty G; McKee MD J Histochem Cytochem; 2007 Apr; 55(4):375-86. PubMed ID: 17189522 [TBL] [Abstract][Full Text] [Related]
15. Validity of mouse models for the study of tissue transglutaminase in neurodegenerative diseases. Bailey CD; Graham RM; Nanda N; Davies PJ; Johnson GV Mol Cell Neurosci; 2004 Mar; 25(3):493-503. PubMed ID: 15033177 [TBL] [Abstract][Full Text] [Related]
16. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization. Lu P; Li L; Liu G; van Rooijen N; Mukaida N; Zhang X Cornea; 2009 Jun; 28(5):562-9. PubMed ID: 19421039 [TBL] [Abstract][Full Text] [Related]
17. Male-specific cardiac pathologies in mice lacking either the A or B subunit of factor XIII. Souri M; Koseki-Kuno S; Takeda N; Yamakawa M; Takeishi Y; Degen JL; Ichinose A Thromb Haemost; 2008 Feb; 99(2):401-8. PubMed ID: 18278192 [TBL] [Abstract][Full Text] [Related]
18. Macrophage-independent T cell infiltration to the site of injury-induced brain inflammation. Fux M; van Rooijen N; Owens T J Neuroimmunol; 2008 Oct; 203(1):64-72. PubMed ID: 18653241 [TBL] [Abstract][Full Text] [Related]
19. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death: a mechanism for maintaining tissue integrity. Nicholas B; Smethurst P; Verderio E; Jones R; Griffin M Biochem J; 2003 Apr; 371(Pt 2):413-22. PubMed ID: 12533191 [TBL] [Abstract][Full Text] [Related]
20. Complex formation between tissue transglutaminase II (tTG) and vascular endothelial growth factor receptor 2 (VEGFR-2): proposed mechanism for modulation of endothelial cell response to VEGF. Dardik R; Inbal A Exp Cell Res; 2006 Oct; 312(16):2973-82. PubMed ID: 16914140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]