BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 16741183)

  • 1. Motor imagery: a backdoor to the motor system after stroke?
    Sharma N; Pomeroy VM; Baron JC
    Stroke; 2006 Jul; 37(7):1941-52. PubMed ID: 16741183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke.
    Hong IK; Choi JB; Lee JH
    Stroke; 2012 Sep; 43(9):2506-9. PubMed ID: 22798329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Motor imagery after stroke: relating outcome to motor network connectivity.
    Sharma N; Baron JC; Rowe JB
    Ann Neurol; 2009 Nov; 66(5):604-16. PubMed ID: 19938103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasticity of premotor cortico-muscular coherence in severely impaired stroke patients with hand paralysis.
    Belardinelli P; Laer L; Ortiz E; Braun C; Gharabaghi A
    Neuroimage Clin; 2017; 14():726-733. PubMed ID: 28409112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesion location alters brain activation in chronically impaired stroke survivors.
    Luft AR; Waller S; Forrester L; Smith GV; Whitall J; Macko RF; Schulz JB; Hanley DF
    Neuroimage; 2004 Mar; 21(3):924-35. PubMed ID: 15006659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motor recovery after stroke: lessons from functional brain imaging.
    Thirumala P; Hier DB; Patel P
    Neurol Res; 2002 Jul; 24(5):453-8. PubMed ID: 12117313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of neurofeedback training with an electroencephalogram-based brain-computer interface for hand paralysis in patients with chronic stroke: a preliminary case series study.
    Shindo K; Kawashima K; Ushiba J; Ota N; Ito M; Ota T; Kimura A; Liu M
    J Rehabil Med; 2011 Oct; 43(10):951-7. PubMed ID: 21947184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation.
    Bajaj S; Butler AJ; Drake D; Dhamala M
    Neuroimage Clin; 2015; 8():572-82. PubMed ID: 26236627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clinical assessment of motor imagery after stroke.
    Malouin F; Richards CL; Durand A; Doyon J
    Neurorehabil Neural Repair; 2008; 22(4):330-40. PubMed ID: 18326057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Motor imagery to enhance recovery after subcortical stroke: who might benefit, daily dose, and potential effects.
    Simmons L; Sharma N; Baron JC; Pomeroy VM
    Neurorehabil Neural Repair; 2008; 22(5):458-67. PubMed ID: 18780881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the performance of motor imagery in stroke patients: multivariate pattern analysis of functional MRI data.
    Park CH; Chang WH; Lee M; Kwon GH; Kim L; Kim ST; Kim YH
    Neurorehabil Neural Repair; 2015; 29(3):247-54. PubMed ID: 25055835
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lateralization of motor imagery following stroke.
    Stinear CM; Fleming MK; Barber PA; Byblow WD
    Clin Neurophysiol; 2007 Aug; 118(8):1794-801. PubMed ID: 17581773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional plasticity induced by mirror training: the mirror as the element connecting both hands to one hemisphere.
    Hamzei F; Läppchen CH; Glauche V; Mader I; Rijntjes M; Weiller C
    Neurorehabil Neural Repair; 2012 Jun; 26(5):484-96. PubMed ID: 22247501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-infrared spectroscopy-mediated neurofeedback enhances efficacy of motor imagery-based training in poststroke victims: a pilot study.
    Mihara M; Hattori N; Hatakenaka M; Yagura H; Kawano T; Hino T; Miyai I
    Stroke; 2013 Apr; 44(4):1091-8. PubMed ID: 23404723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurophysiological substrates of stroke patients with motor imagery-based Brain-Computer Interface training.
    Li M; Liu Y; Wu Y; Liu S; Jia J; Zhang L
    Int J Neurosci; 2014 Jun; 124(6):403-15. PubMed ID: 24079396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor imagery and stroke rehabilitation: a critical discussion.
    de Vries S; Mulder T
    J Rehabil Med; 2007 Jan; 39(1):5-13. PubMed ID: 17225031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of FMRI activation in the perilesional primary motor cortex and cerebellum with rehabilitation training-related motor gains after stroke: a pilot study.
    Dong Y; Winstein CJ; Albistegui-DuBois R; Dobkin BH
    Neurorehabil Neural Repair; 2007; 21(5):412-28. PubMed ID: 17369516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrates for motor imagery in severe hemiparesis.
    Kimberley TJ; Khandekar G; Skraba LL; Spencer JA; Van Gorp EA; Walker SR
    Neurorehabil Neural Repair; 2006 Jun; 20(2):268-77. PubMed ID: 16679504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The functional anatomy of motor imagery after sub-acute stroke.
    Kraft E; Schaal MC; Lule D; König E; Scheidtmann K
    NeuroRehabilitation; 2015; 36(3):329-37. PubMed ID: 26409336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mental practice with motor imagery: evidence for motor recovery and cortical reorganization after stroke.
    Butler AJ; Page SJ
    Arch Phys Med Rehabil; 2006 Dec; 87(12 Suppl 2):S2-11. PubMed ID: 17140874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.