BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 16741232)

  • 21. Evidence for a conserved relationship between an acceptor stem and a tRNA for aminoacylation.
    Hou YM; Sterner T; Bhalla R
    RNA; 1995 Sep; 1(7):707-13. PubMed ID: 7585255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Suppression of amber codons in Caulobacter crescentus by the orthogonal Escherichia coli histidyl-tRNA synthetase/tRNAHis pair.
    Ko JH; Llopis PM; Heinritz J; Jacobs-Wagner C; Söll D
    PLoS One; 2013; 8(12):e83630. PubMed ID: 24386240
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TFAM detects co-evolution of tRNA identity rules with lateral transfer of histidyl-tRNA synthetase.
    Ardell DH; Andersson SG
    Nucleic Acids Res; 2006; 34(3):893-904. PubMed ID: 16473847
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary gain of highly divergent tRNA specificities by two isoforms of human histidyl-tRNA synthetase.
    Lee YH; Chang CP; Cheng YJ; Kuo YY; Lin YS; Wang CC
    Cell Mol Life Sci; 2017 Jul; 74(14):2663-2677. PubMed ID: 28321488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic aminoacylation of an eight-base-pair microhelix with histidine.
    Francklyn C; Schimmel P
    Proc Natl Acad Sci U S A; 1990 Nov; 87(21):8655-9. PubMed ID: 2236077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cross-species aminoacylation of tRNA with a long variable arm between Escherichia coli and Saccharomyces cerevisiae.
    Soma A; Himeno H
    Nucleic Acids Res; 1998 Oct; 26(19):4374-81. PubMed ID: 9742237
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An unusual tRNAThr derived from tRNAHis reassigns in yeast mitochondria the CUN codons to threonine.
    Su D; Lieberman A; Lang BF; Simonovic M; Söll D; Ling J
    Nucleic Acids Res; 2011 Jun; 39(11):4866-74. PubMed ID: 21321019
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Function of the extra 5'-phosphate carried by histidine tRNA.
    Fromant M; Plateau P; Blanquet S
    Biochemistry; 2000 Apr; 39(14):4062-7. PubMed ID: 10747795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The modified wobble base inosine in yeast tRNAIle is a positive determinant for aminoacylation by isoleucyl-tRNA synthetase.
    Senger B; Auxilien S; Englisch U; Cramer F; Fasiolo F
    Biochemistry; 1997 Jul; 36(27):8269-75. PubMed ID: 9204872
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Naturally occurring dual recognition of tRNA
    Lee YH; Lo YT; Chang CP; Yeh CS; Chang TH; Chen YW; Tseng YK; Wang CC
    RNA Biol; 2019 Sep; 16(9):1275-1285. PubMed ID: 31179821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Temporal Order in 5'- and 3'- Processing of Eukaryotic tRNA
    Pöhler MT; Roach TM; Betat H; Jackman JE; Mörl M
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30893886
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Depletion of Saccharomyces cerevisiae tRNA(His) guanylyltransferase Thg1p leads to uncharged tRNAHis with additional m(5)C.
    Gu W; Hurto RL; Hopper AK; Grayhack EJ; Phizicky EM
    Mol Cell Biol; 2005 Sep; 25(18):8191-201. PubMed ID: 16135808
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular recognition of histidine tRNA by histidyl-tRNA synthetase from hyperthermophilic archaeon, Aeropyrum pernix K1.
    Nagatoyo Y; Iwaki J; Suzuki S; Kuno A; Hasegawa T
    Nucleic Acids Symp Ser (Oxf); 2005; (49):307-8. PubMed ID: 17150756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Only one nucleotide insertion to the long variable arm confers an efficient serine acceptor activity upon Saccharomyces cerevisiae tRNA(Leu) in vitro.
    Himeno H; Yoshida S; Soma A; Nishikawa K
    J Mol Biol; 1997 May; 268(4):704-11. PubMed ID: 9175855
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystallization of Thermus thermophilus histidyl-tRNA synthetase and its complex with tRNAHis.
    Yaremchuk AD; Cusack S; Aberg A; Gudzera O; Kryklivyi I; Tukalo M
    Proteins; 1995 Aug; 22(4):426-8. PubMed ID: 7479716
    [TBL] [Abstract][Full Text] [Related]  

  • 37. tRNAHis-guanylyltransferase establishes tRNAHis identity.
    Heinemann IU; Nakamura A; O'Donoghue P; Eiler D; Söll D
    Nucleic Acids Res; 2012 Jan; 40(1):333-44. PubMed ID: 21890903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular mechanism of substrate recognition and specificity of tRNA
    Nakamura A; Wang D; Komatsu Y
    RNA; 2018 Nov; 24(11):1583-1593. PubMed ID: 30111535
    [TBL] [Abstract][Full Text] [Related]  

  • 39. tRNAHis 5-methylcytidine levels increase in response to several growth arrest conditions in Saccharomyces cerevisiae.
    Preston MA; D'Silva S; Kon Y; Phizicky EM
    RNA; 2013 Feb; 19(2):243-56. PubMed ID: 23249748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conservation in evolution for a small monomeric phenylalanyl-tRNA synthetase of the tRNA(Phe) recognition nucleotides and initial aminoacylation site.
    Aphasizhev R; Senger B; Rengers JU; Sprinzl M; Walter P; Nussbaum G; Fasiolo F
    Biochemistry; 1996 Jan; 35(1):117-23. PubMed ID: 8555164
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.