These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 16741256)

  • 1. Analysis of lung parenchyma as a parametric porous medium.
    Lande B; Mitzner W
    J Appl Physiol (1985); 2006 Sep; 101(3):926-33. PubMed ID: 16741256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A viscoelastic nonlinear compressible material model of lung parenchyma - Experiments and numerical identification.
    Birzle AM; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():164-175. PubMed ID: 30897504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impedance of a fibrin clot in a cylindrical tube: relation to clot permeability and viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 1995; 32(5):503-20. PubMed ID: 8541521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lung and alveolar wall elastic and hysteretic behavior in rats: effects of in vivo elastase treatment.
    Brewer KK; Sakai H; Alencar AM; Majumdar A; Arold SP; Lutchen KR; Ingenito EP; Suki B
    J Appl Physiol (1985); 2003 Nov; 95(5):1926-36. PubMed ID: 12871961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel two-layer, coupled finite element approach for modeling the nonlinear elastic and viscoelastic behavior of human erythrocytes.
    Klöppel T; Wall WA
    Biomech Model Mechanobiol; 2011 Jul; 10(4):445-59. PubMed ID: 20725846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A recruitment-based rheological model for mechanical behavior of soft tissues.
    Romero FJ; Pastor A; Lopez J; Romero PV
    Biorheology; 1998; 35(1):17-35. PubMed ID: 10211127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics.
    Ma B; Lutchen KR
    Ann Biomed Eng; 2006 Nov; 34(11):1691-704. PubMed ID: 17019619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic viscoelastic nonlinearity of lung parenchymal tissue.
    Navajas D; Maksym GN; Bates JH
    J Appl Physiol (1985); 1995 Jul; 79(1):348-56. PubMed ID: 7559242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An experimental and theoretical approach of elasticity and viscoelasticity of compact and spongy bone with periodic homogenization.
    Cherraf-Schweyer C; Maurice G; Taghite M; Taous K
    Comput Methods Biomech Biomed Engin; 2007 Jun; 10(3):195-207. PubMed ID: 17558648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformation analysis of the periodontium considering the viscoelasticity of the periodontal ligament.
    Qian L; Todo M; Morita Y; Matsushita Y; Koyano K
    Dent Mater; 2009 Oct; 25(10):1285-92. PubMed ID: 19560807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliability of estimating stochastic lung tissue heterogeneity from pulmonary impedance spectra: a forward-inverse modeling study.
    Kaczka DW; Massa CB; Simon BA
    Ann Biomed Eng; 2007 Oct; 35(10):1722-38. PubMed ID: 17558554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics.
    Verri M; Guidoboni G; Bociu L; Sacco R
    Math Biosci Eng; 2018 Aug; 15(4):933-959. PubMed ID: 30380316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical interactions between collagen and proteoglycans: implications for the stability of lung tissue.
    Cavalcante FS; Ito S; Brewer K; Sakai H; Alencar AM; Almeida MP; Andrade JS; Majumdar A; Ingenito EP; Suki B
    J Appl Physiol (1985); 2005 Feb; 98(2):672-9. PubMed ID: 15448123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poro-viscoelastic behavior of gelatin hydrogels under compression-implications for bioelasticity imaging.
    Kalyanam S; Yapp RD; Insana MF
    J Biomech Eng; 2009 Aug; 131(8):081005. PubMed ID: 19604017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A recruitment model of quasi-linear power-law stress adaptation in lung tissue.
    Bates JH
    Ann Biomed Eng; 2007 Jul; 35(7):1165-74. PubMed ID: 17380389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peristaltic propulsion of generalized Burgers' fluids through a non-uniform porous medium: a study of chyme dynamics through the diseased intestine.
    Tripathi D; Anwar Bég O
    Math Biosci; 2014 Feb; 248():67-77. PubMed ID: 24300568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nonlinear anisotropic viscoelastic model for the tensile behavior of the corneal stroma.
    Nguyen TD; Jones RE; Boyce BL
    J Biomech Eng; 2008 Aug; 130(4):041020. PubMed ID: 18601462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Damage Mechanics of Biological Tissues in Relation to Viscoelasticity.
    Ateshian GA; Kroupa KR; Petersen CA; Zimmerman BK; Maas SA; Weiss JA
    J Biomech Eng; 2023 Apr; 145(4):. PubMed ID: 36301266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.