These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects. Boyd M; Mairs RJ; Keith WN; Ross SC; Welsh P; Akabani G; Owens J; Vaidyanathan G; Carruthers R; Dorrens J; Zalutsky MR J Gene Med; 2004 Aug; 6(8):937-47. PubMed ID: 15293352 [TBL] [Abstract][Full Text] [Related]
4. Expression in UVW glioma cells of the noradrenaline transporter gene, driven by the telomerase RNA promoter, induces active uptake of [131I]MIBG and clonogenic cell kill. Boyd M; Mairs RJ; Mairs SC; Wilson L; Livingstone A; Cunningham SH; Brown MM; Quigg M; Keith WN Oncogene; 2001 Nov; 20(53):7804-8. PubMed ID: 11753659 [TBL] [Abstract][Full Text] [Related]
5. A gene therapy/targeted radiotherapy strategy for radiation cell kill by. Boyd M; Mairs RJ; Cunningham SH; Mairs SC; McCluskey A; Livingstone A; Stevenson K; Brown MM; Wilson L; Carlin S; Wheldon TE J Gene Med; 2001; 3(2):165-72. PubMed ID: 11318115 [TBL] [Abstract][Full Text] [Related]
6. Application of targeted radiotherapy/gene therapy to bladder cancer cell lines. Fullerton NE; Mairs RJ; Kirk D; Keith WN; Carruthers R; McCluskey AG; Brown M; Wilson L; Boyd M Eur Urol; 2005 Feb; 47(2):250-6. PubMed ID: 15661422 [TBL] [Abstract][Full Text] [Related]
7. A transfectant mosaic xenograft model for evaluation of targeted radiotherapy in combination with gene therapy in vivo. Mairs RJ; Ross SC; McCluskey AG; Boyd M J Nucl Med; 2007 Sep; 48(9):1519-26. PubMed ID: 17704246 [TBL] [Abstract][Full Text] [Related]
8. Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Boyd M; Cunningham SH; Brown MM; Mairs RJ; Wheldon TE Gene Ther; 1999 Jun; 6(6):1147-52. PubMed ID: 10455418 [TBL] [Abstract][Full Text] [Related]
9. Transfectant mosaic spheroids: a new model for evaluation of tumour cell killing in targeted radiotherapy and experimental gene therapy. Boyd M; Mairs SC; Stevenson K; Livingstone A; Clark AM; Ross SC; Mairs RJ J Gene Med; 2002; 4(5):567-76. PubMed ID: 12221650 [TBL] [Abstract][Full Text] [Related]
10. Study on cell survival, induction of apoptosis and micronucleus formation in SCL-II cells after exposure to the auger electron emitter (99m)Tc. Kriehuber R; Kadenbach K; Schultz F; Weiss DG Int J Radiat Biol; 2004; 80(11-12):875-80. PubMed ID: 15764396 [TBL] [Abstract][Full Text] [Related]
11. Effects of low and high LET radiations on bystander human lung fibroblast cell survival. Baskar R; Balajee AS; Geard CR Int J Radiat Biol; 2007 Aug; 83(8):551-9. PubMed ID: 17613128 [TBL] [Abstract][Full Text] [Related]
12. Targeted radiotherapy: microgray doses and the bystander effect. Mairs RJ; Fullerton NE; Zalutsky MR; Boyd M Dose Response; 2007 Apr; 5(3):204-13. PubMed ID: 18648605 [TBL] [Abstract][Full Text] [Related]
13. Comparison of radiohaloanalogues of meta-iodobenzylguanidine (MIBG) for a combined gene- and targeted radiotherapy approach to bladder carcinoma. Fullerton NE; Boyd M; Ross SC; Pimlott SL; Babich J; Kirk D; Zalutsky MR; Mairs RJ Med Chem; 2005 Nov; 1(6):611-8. PubMed ID: 16787344 [TBL] [Abstract][Full Text] [Related]
14. Somatostatin-receptor-targeted alpha-emitting 213Bi is therapeutically more effective than beta(-)-emitting 177Lu in human pancreatic adenocarcinoma cells. Nayak TK; Norenberg JP; Anderson TL; Prossnitz ER; Stabin MG; Atcher RW Nucl Med Biol; 2007 Feb; 34(2):185-93. PubMed ID: 17307126 [TBL] [Abstract][Full Text] [Related]
15. Optimizing MIBG therapy of neuroendocrine tumors: preclinical evidence of dose maximization and synergy. Mairs RJ; Boyd M Nucl Med Biol; 2008 Aug; 35 Suppl 1():S9-20. PubMed ID: 18707637 [TBL] [Abstract][Full Text] [Related]
16. Effect of dose rate on the radiation-induced bystander response. Gow MD; Seymour CB; Byun SH; Mothersill CE Phys Med Biol; 2008 Jan; 53(1):119-32. PubMed ID: 18182691 [TBL] [Abstract][Full Text] [Related]
17. Requirements regarding dose rate and exposure time for killing of tumour cells in beta particle radionuclide therapy. Carlsson J; Eriksson V; Stenerlöw B; Lundqvist H Eur J Nucl Med Mol Imaging; 2006 Oct; 33(10):1185-95. PubMed ID: 16718515 [TBL] [Abstract][Full Text] [Related]
18. In vitro toxicity of A-431 carcinoma cells with antibodies to epidermal growth factor receptor and epithelial glycoprotein-1 conjugated to radionuclides emitting low-energy electrons. Michel RB; Castillo ME; Andrews PM; Mattes MJ Clin Cancer Res; 2004 Sep; 10(17):5957-66. PubMed ID: 15355929 [TBL] [Abstract][Full Text] [Related]
19. Combined effect of tumor necrosis factor-alpha and ionizing radiation on the induction of apoptosis in 5637 bladder carcinoma cells. Baierlein SA; Distel L; Sieber R; Weiss C; Rödel C; Sauer R; Rödel F Strahlenther Onkol; 2006 Aug; 182(8):467-72. PubMed ID: 16896593 [TBL] [Abstract][Full Text] [Related]
20. Concerning the health effects of internally deposited radionuclides. Raabe OG Health Phys; 2010 Mar; 98(3):515-36. PubMed ID: 20147792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]