These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 16741478)

  • 1. The ABJS Nicolas Andry Award: Tissue engineering of bone and ligament: a 15-year perspective.
    Laurencin CT; Khan Y; Kofron M; El-Amin S; Botchwey E; Yu X; Cooper JA
    Clin Orthop Relat Res; 2006 Jun; 447():221-36. PubMed ID: 16741478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioactive scaffolds for bone and ligament tissue.
    Guarino V; Causa F; Ambrosio L
    Expert Rev Med Devices; 2007 May; 4(3):405-18. PubMed ID: 17488233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell delivery therapeutics for musculoskeletal regeneration.
    Nöth U; Rackwitz L; Steinert AF; Tuan RS
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):765-83. PubMed ID: 20398712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological and biophysical principles in extracorporal bone tissue engineering. Part II.
    Wiesmann HP; Joos U; Meyer U
    Int J Oral Maxillofac Surg; 2004 Sep; 33(6):523-30. PubMed ID: 15308249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo evaluation of a multiphased scaffold designed for orthopaedic interface tissue engineering and soft tissue-to-bone integration.
    Spalazzi JP; Dagher E; Doty SB; Guo XE; Rodeo SA; Lu HH
    J Biomed Mater Res A; 2008 Jul; 86(1):1-12. PubMed ID: 18442111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage.
    Moutos FT; Freed LE; Guilak F
    Nat Mater; 2007 Feb; 6(2):162-7. PubMed ID: 17237789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.
    Jabbarzadeh E; Jiang T; Deng M; Nair LS; Khan YM; Laurencin CT
    Biotechnol Bioeng; 2007 Dec; 98(5):1094-102. PubMed ID: 17497742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increase in cell migration and angiogenesis in a composite silk scaffold for tissue-engineered ligaments.
    Seo YK; Yoon HH; Song KY; Kwon SY; Lee HS; Park YS; Park JK
    J Orthop Res; 2009 Apr; 27(4):495-503. PubMed ID: 18924141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel mesoporous silica-based antibiotic releasing scaffold for bone repair.
    Shi X; Wang Y; Ren L; Zhao N; Gong Y; Wang DA
    Acta Biomater; 2009 Jun; 5(5):1697-707. PubMed ID: 19217361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering.
    Sahoo S; Cho-Hong JG; Siew-Lok T
    Biomed Mater; 2007 Sep; 2(3):169-73. PubMed ID: 18458468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone tissue engineering: state of the art and future trends.
    Salgado AJ; Coutinho OP; Reis RL
    Macromol Biosci; 2004 Aug; 4(8):743-65. PubMed ID: 15468269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration.
    Chesnutt BM; Viano AM; Yuan Y; Yang Y; Guda T; Appleford MR; Ong JL; Haggard WO; Bumgardner JD
    J Biomed Mater Res A; 2009 Feb; 88(2):491-502. PubMed ID: 18306307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro evaluation of chitosan/poly(lactic acid-glycolic acid) sintered microsphere scaffolds for bone tissue engineering.
    Jiang T; Abdel-Fattah WI; Laurencin CT
    Biomaterials; 2006 Oct; 27(28):4894-903. PubMed ID: 16762408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro characterization of three-dimensional scaffolds seeded with human bone marrow stromal cells for tissue engineered growth of bone: mission impossible? A methodological approach.
    Materna T; Rolf HJ; Napp J; Schulz J; Gelinsky M; Schliephake H
    Clin Oral Implants Res; 2008 Apr; 19(4):379-86. PubMed ID: 18324959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A platelet-derived growth factor releasing chitosan/coral composite scaffold for periodontal tissue engineering.
    Zhang Y; Wang Y; Shi B; Cheng X
    Biomaterials; 2007 Mar; 28(8):1515-22. PubMed ID: 17169421
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential osteogenic activity of osteoprogenitor cells on HA and TCP/HA scaffold of tissue engineered bone.
    Ng AM; Tan KK; Phang MY; Aziyati O; Tan GH; Isa MR; Aminuddin BS; Naseem M; Fauziah O; Ruszymah BH
    J Biomed Mater Res A; 2008 May; 85(2):301-12. PubMed ID: 17688285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen scaffolds for tissue engineering.
    Glowacki J; Mizuno S
    Biopolymers; 2008 May; 89(5):338-44. PubMed ID: 17941007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On scaffold designing for bone regeneration: A computational multiscale approach.
    Sanz-Herrera JA; García-Aznar JM; Doblaré M
    Acta Biomater; 2009 Jan; 5(1):219-29. PubMed ID: 18725187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.