These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 16741955)

  • 1. Cdk9 phosphorylates p53 on serine 392 independently of CKII.
    Claudio PP; Cui J; Ghafouri M; Mariano C; White MK; Safak M; Sheffield JB; Giordano A; Khalili K; Amini S; Sawaya BE
    J Cell Physiol; 2006 Sep; 208(3):602-12. PubMed ID: 16741955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29.
    Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN
    J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
    Zhou M; Deng L; Kashanchi F; Brady JN; Shatkin AJ; Kumar A
    Proc Natl Acad Sci U S A; 2003 Oct; 100(22):12666-71. PubMed ID: 14569024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription.
    Zhou M; Halanski MA; Radonovich MF; Kashanchi F; Peng J; Price DH; Brady JN
    Mol Cell Biol; 2000 Jul; 20(14):5077-86. PubMed ID: 10866664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EBV EBNA 2 stimulates CDK9-dependent transcription and RNA polymerase II phosphorylation on serine 5.
    Bark-Jones SJ; Webb HM; West MJ
    Oncogene; 2006 Mar; 25(12):1775-85. PubMed ID: 16314842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular control of gene expression by T-type cyclin/CDK9 complexes.
    Garriga J; Graña X
    Gene; 2004 Aug; 337():15-23. PubMed ID: 15276198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential localization and expression of the Cdk9 42k and 55k isoforms.
    Liu H; Herrmann CH
    J Cell Physiol; 2005 Apr; 203(1):251-60. PubMed ID: 15452830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific DNA binding by p53 is independent of mutation at serine 389, the casein kinase II site.
    Rolley N; Milner J
    Oncogene; 1994 Oct; 9(10):3067-70. PubMed ID: 8084615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation.
    Kim YK; Bourgeois CF; Isel C; Churcher MJ; Karn J
    Mol Cell Biol; 2002 Jul; 22(13):4622-37. PubMed ID: 12052871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CDK2 regulates HIV-1 transcription by phosphorylation of CDK9 on serine 90.
    Breuer D; Kotelkin A; Ammosova T; Kumari N; Ivanov A; Ilatovskiy AV; Beullens M; Roane PR; Bollen M; Petukhov MG; Kashanchi F; Nekhai S
    Retrovirology; 2012 Nov; 9():94. PubMed ID: 23140174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Establishment of a Hyperactive Structure Allows the Tumour Suppressor Protein p53 to Function through P-TEFb during Limited CDK9 Kinase Inhibition.
    Albert TK; Antrecht C; Kremmer E; Meisterernst M
    PLoS One; 2016; 11(1):e0146648. PubMed ID: 26745862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Medicago CDKC;1-CYCLINT;1 kinase complex phosphorylates the carboxy-terminal domain of RNA polymerase II and promotes transcription.
    Fülöp K; Pettkó-Szandtner A; Magyar Z; Miskolczi P; Kondorosi E; Dudits D; Bakó L
    Plant J; 2005 Jun; 42(6):810-20. PubMed ID: 15941395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P-TEFb goes viral.
    Zaborowska J; Isa NF; Murphy S
    Bioessays; 2016 Jul; 38 Suppl 1():S75-85. PubMed ID: 27417125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical interaction between CDK9 and B-Myb results in suppression of B-Myb gene autoregulation.
    De Falco G; Bagella L; Claudio PP; De Luca A; Fu Y; Calabretta B; Sala A; Giordano A
    Oncogene; 2000 Jan; 19(3):373-9. PubMed ID: 10656684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners.
    Michels AA; Bensaude O
    Biotechnol J; 2008 Aug; 3(8):1022-32. PubMed ID: 18655042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Cdk9(55) and differential regulation of two Cdk9 isoforms.
    Shore SM; Byers SA; Dent P; Price DH
    Gene; 2005 Apr; 350(1):51-8. PubMed ID: 15780980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Binding of RNA to p53 regulates its oligomerization and DNA-binding activity.
    Yoshida Y; Izumi H; Torigoe T; Ishiguchi H; Yoshida T; Itoh H; Kohno K
    Oncogene; 2004 May; 23(25):4371-9. PubMed ID: 15064727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantage of a baculovirus expression system for protein-protein interaction studies. Involvement of posttranslational phosphorylation in the interaction between wt p53 protein and poly(ADP-ribose) polymerase-1.
    Schmid G; Wojciechowski J; Wesierska-Gadek J
    Acta Biochim Pol; 2005; 52(3):713-9. PubMed ID: 16082409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cdk9 phosphorylates Pirh2 protein and prevents degradation of p53 protein.
    Bagashev A; Fan S; Mukerjee R; Claudio PP; Chabrashvili T; Leng RP; Benchimol S; Sawaya BE
    Cell Cycle; 2013 May; 12(10):1569-77. PubMed ID: 23603988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation regulates the interaction and complex formation between wt p53 protein and PARP-1.
    Wesierska-Gadek J; Wojciechowski J; Schmid G
    J Cell Biochem; 2003 Aug; 89(6):1260-84. PubMed ID: 12898523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.