BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 16742545)

  • 1. The conversion of cholest-7-en-3beta-ol into cholesterol. General comments on the mechanism of the introduction of double bonds in enzymic reactions.
    Dewhurst SM; Akhtar M
    Biochem J; 1967 Dec; 105(3):1187-94. PubMed ID: 16742545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanism of the elaboration of ring B in ergosterol biosynthesis.
    Akhtar M; Parvez MA
    Biochem J; 1968 Jul; 108(4):527-31. PubMed ID: 5667264
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stereochemistry of the hydrogen elimination in the biological conversion of cholest-7-en-3-beta-ol into cholesterol.
    Akhtar M; Marsh S
    Biochem J; 1967 Feb; 102(2):462-7. PubMed ID: 6029605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of a 5alpha-hydroxylated intermediate in the formation of the 5, 6-double bond in cholesterol biosynthesis.
    Alexander K; Akhtar M
    Biochem J; 1975 Feb; 145(2):345-52. PubMed ID: 1156363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuterated delta 7-cholestenol analogues as mechanistic probes for wild-type and mutated delta 7-sterol-C5(6)-desaturase.
    Rahier A
    Biochemistry; 2001 Jan; 40(1):256-67. PubMed ID: 11141078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mode of formulation of cholesta-5,7-dien-3beta-ol from Cholest-5-en-3beta-ol by Larvae of Calliphora erythrocephala.
    Johnson P; Cook IF; Rees HH; Goodwin TW
    Biochem J; 1975 Nov; 152(2):303-11. PubMed ID: 1220687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and in vitro biological activity of 4alpha-(2-propenyl)-5alpha-cholest-24-en-3alpha,12 alpha-diol, a 12alpha-hydroxyl analog of 4alpha-(2-propenyl)-5alpha-cholest-24-en-3alpha-ol: the latter is a potent activator of the low-density lipoprotein receptor promoter.
    Lin HS; Rampersaud AA; Beavers LS; McClure DB; Gardner AJ; Eacho PI; Foxworthy PS; Gadski RA
    Steroids; 1999 Oct; 64(10):735-41. PubMed ID: 10498032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The conversion of cholest-5-en-3beta-ol into cholest-7-en-3beta-ol by the echinoderms Asterias rubens and Solaster papposus.
    Smith AG; Goad LJ
    Biochem J; 1975 Jan; 146(1):35-40. PubMed ID: 1147903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CH(3)ReO(3)-catalyzed oxidation of cholesta-5,7-dien-3beta-yl acetate with the urea-hydrogen peroxide adduct under various conditions. Synthesis of the natural epoxy sterol 9alpha,11alpha-epoxy-5alpha-cholest-7-en-3beta,5,6beta-triol.
    Musumeci D; Sica D
    Steroids; 2002 Jun; 67(7):661-8. PubMed ID: 11996940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3β,5α,6β-Oxygenated sterols from the South China Sea gorgonian Muriceopsis flavida and their tumor cell growth inhibitory activity and apoptosis-inducing function.
    Liu TF; Lu X; Tang H; Zhang MM; Wang P; Sun P; Liu ZY; Wang ZL; Li L; Rui YC; Li TJ; Zhang W
    Steroids; 2013 Jan; 78(1):108-14. PubMed ID: 23123740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of bile acids in man: conversion of cholesterol into 5-beta-cholestane-3-alpha, 7-alpha, 12-alpha-triol in liver homogenates.
    Björkheim I; Danielsson H; Einarsson K; Johansson G
    J Clin Invest; 1968 Jul; 47(7):1573-82. PubMed ID: 4385432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary cholesterol-oxidation products accumulate in serum and liver in apolipoprotein E-deficient mice, but do not accelerate atherosclerosis.
    Ando M; Tomoyori H; Imaizumi K
    Br J Nutr; 2002 Oct; 88(4):339-45. PubMed ID: 12323083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interaction of acyl derivatives of 3beta-hydroxy-5alpha-cholest-8(14)-en-15-one and 3alpha-hydroxy-5alpha-cholest-8(14)-en-15-one with hepatoma hep G2 cells].
    Piĭr EA; Medvedeva NV; Kashirina NM; Shevelev AIa; Misharin AIu
    Biomed Khim; 2004; 50(5):484-92. PubMed ID: 15628598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical bromination of cholest-5-enes.
    Milisavljević SS; Wurst K; Laus G; Vukićević MD; Vukićević RD
    Steroids; 2005 Dec; 70(13):867-72. PubMed ID: 16039678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human saturated steroid 6alpha-hydroxylase.
    Dombroski R; Casey ML; Macdonald PC
    J Clin Endocrinol Metab; 1997 May; 82(5):1338-44. PubMed ID: 9141513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inversion of the unnatural cis C/D sterol ring junction of 5alpha, 14beta-cholest-7en-3beta-ol by rat-liver enzymes.
    Galli Kienle M; Anastasia M; Cighetti G; Manzocchi A; Galli G
    Eur J Biochem; 1977 Feb; 73(1):1-6. PubMed ID: 837931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
    Watkinson IA; Wilton DC; Munday KA; Akhtar M
    Biochem J; 1971 Jan; 121(1):131-7. PubMed ID: 4398958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo uptake and metabolism of 3-h-5alpha-androstane-3alpha,17beta-diol and of 3-h-5alpha-androstane-3beta,17beta-diol by human prostatic hypertrophy.
    Horst HJ; Dennis M; Kaufmann J; Voigt KD
    Acta Endocrinol (Copenh); 1975 Jun; 79(2):394-402. PubMed ID: 49141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of sterols and ecdysteroids in Ajuga hairy roots.
    Fujimoto Y; Ohyama K; Nomura K; Hyodo R; Takahashi K; Yamada J; Morisaki M
    Lipids; 2000 Mar; 35(3):279-88. PubMed ID: 10783005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol oxides as biomarkers of oxidative stress in type 1 and type 2 diabetes mellitus.
    Ferderbar S; Pereira EC; Apolinário E; Bertolami MC; Faludi A; Monte O; Calliari LE; Sales JE; Gagliardi AR; Xavier HT; Abdalla DS
    Diabetes Metab Res Rev; 2007 Jan; 23(1):35-42. PubMed ID: 16634125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.