These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 16748254)

  • 1. The inhibition of thiol enzymes by lachrymators.
    Mackworth JF
    Biochem J; 1948; 42(1):82-90. PubMed ID: 16748254
    [No Abstract]   [Full Text] [Related]  

  • 2. Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes.
    Conaway CC; Krzeminski J; Amin S; Chung FL
    Chem Res Toxicol; 2001 Sep; 14(9):1170-6. PubMed ID: 11559030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Oral Zinc Supplementation on the Thiol Oxido-Reductive Index and Thiol-Related Enzymes in Seminal Plasma and Spermatozoa of Iraqi Asthenospermic Patients.
    Alsalman ARS; Almashhedy LA; Hadwan MH
    Biol Trace Elem Res; 2018 Aug; 184(2):340-349. PubMed ID: 29222649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of response of succinic dehydrogenase and succinoxidase system to organic mercurial and thiol compounds.
    KREKE C; KROGER MH; COOK ES
    J Biol Chem; 1949 Sep; 180(2):565-70. PubMed ID: 18135789
    [No Abstract]   [Full Text] [Related]  

  • 5. Four sulfhydryl-modifying compounds cause different structural damage but similar functional damage in murine lymphocytes.
    Duncan DD; Lawrence DA
    Chem Biol Interact; 1988; 68(1-2):137-52. PubMed ID: 3203405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thiol compounds rescue growth inhibition by retinoic acid on HTLV-I (+) T lymphocytes; possible mechanism of retinoic-acid-induced growth inhibition of adult T-cell leukemia cells.
    Miyatake J; Maeda Y; Nawata H; Sumimoto Y; Sono H; Sakaguchi M; Matsuda M; Tatsumi Y; Urase F; Horiuchi F; Irimajiri K; Horiuchi A
    Hematopathol Mol Hematol; 1998; 11(2):89-99. PubMed ID: 9608357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of sulfhydryl inhibitors and thiol compounds on pigment aggregation and dispersion in the melanophores of Anolis carolinensis.
    HOROWITZ SB
    Exp Cell Res; 1957 Oct; 13(2):400-2. PubMed ID: 13480308
    [No Abstract]   [Full Text] [Related]  

  • 8. Bioanalytical considerations for compounds containing free sulfhydryl groups.
    Srinivas NR; Mamidi RN
    Biomed Chromatogr; 2003 Jul; 17(5):285-91. PubMed ID: 12884392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of activity of human alkaline phosphatases by Mg2+ and thiol compounds.
    Navaratnam N; Stinson RA
    Biochim Biophys Acta; 1986 Jan; 869(1):99-105. PubMed ID: 3942754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substituted pyridines as two-protonic-state reactivity probes, reporter-group delivery vehicles and labelling reagents for the study of thiol enzymes [proceedings].
    Brocklehurst K; Malthouse JP; Baines BS; Blenkinsop RD; Churcher JA; Mushiri MS; Ormerod F
    Biochem Soc Trans; 1978; 6(1):261-3. PubMed ID: 640183
    [No Abstract]   [Full Text] [Related]  

  • 11. The thiolesterase activity of sulfhydryl-activated enzymes. A new assay for thiol proteases based on activation by Sepharose-bound mercaptan.
    Metrione RM
    Anal Biochem; 1981 Jan; 110(1):117-22. PubMed ID: 7212254
    [No Abstract]   [Full Text] [Related]  

  • 12. The demonstration of thiol groups in certain tissues by means of a new colored sulfhydryl reagent.
    BENNETT HS
    Anat Rec; 1951 Jun; 110(2):231-46. PubMed ID: 14857344
    [No Abstract]   [Full Text] [Related]  

  • 13. Thiol-disulphide exchange--a new method for the reversible immobilization of enzymes.
    Carlsson J
    Hindustan Antibiot Bull; 1978; 20(3-4):105-8. PubMed ID: 748284
    [No Abstract]   [Full Text] [Related]  

  • 14. Penaeus vannamei protease activating mechanism of sulfhydryl reducing compounds.
    Bahrami M; Homaei A
    Int J Biol Macromol; 2018 Jun; 112():1131-1137. PubMed ID: 29454948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protective effects of thiol compounds on chromate-induced toxicity in vitro and in vivo.
    Susa N; Ueno S; Furukawa Y
    Environ Health Perspect; 1994 Sep; 102 Suppl 3(Suppl 3):247-50. PubMed ID: 7843107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Enzymes of thiol-disulfide metabolism of proteins].
    Trufanov VA; Kichatinova SV; Shatilov VR; Kretovich VL
    Prikl Biokhim Mikrobiol; 1990; 26(1):3-10. PubMed ID: 2190208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thiol-dependent enzymes and their inhibitors: a review.
    Leung-Toung R; Li W; Tam TF; Karimian K
    Curr Med Chem; 2002 May; 9(9):979-1002. PubMed ID: 11966457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of thiol modification on brain mitochondrial complex I activity.
    Balijepalli S; Annepu J; Boyd MR; Ravindranath V
    Neurosci Lett; 1999 Sep; 272(3):203-6. PubMed ID: 10505616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of thiol reagents on extractability of protein from yeast.
    Shetty KJ; Kinsella JE
    Biotechnol Bioeng; 1978 May; 20(5):755-66. PubMed ID: 348246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of bioactive thiol-silicate nanoparticles.
    Neville F; Millner P
    Methods Mol Biol; 2011; 743():131-45. PubMed ID: 21553188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.