These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 1674831)

  • 21. Neural mechanism underlying acupuncture analgesia.
    Zhao ZQ
    Prog Neurobiol; 2008 Aug; 85(4):355-75. PubMed ID: 18582529
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spinal interactions between opioid and noradrenergic agonists in mice: multiplicativity involves delta and alpha-2 receptors.
    Roerig SC; Lei S; Kitto K; Hylden JK; Wilcox GL
    J Pharmacol Exp Ther; 1992 Jul; 262(1):365-74. PubMed ID: 1378095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different mechanisms mediate beta-endorphin- and morphine-induced inhibition of the tail-flick response in rats.
    Tseng LF; Tang R
    J Pharmacol Exp Ther; 1990 Feb; 252(2):546-51. PubMed ID: 2156050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphine applied to the thalamic nucleus submedius produces a naloxone reversible antinociceptive effect in the rat.
    Dong YF; Tang JS; Yuan B; Jia H
    Neurosci Lett; 1999 Aug; 271(1):17-20. PubMed ID: 10471203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Supraspinal and spinal cord opioid receptors are responsible for antinociception following intrathecal morphine injections.
    Goodchild CS; Nadeson R; Cohen E
    Eur J Anaesthesiol; 2004 Mar; 21(3):179-85. PubMed ID: 15055889
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibition by spinal mu- and delta-opioid agonists of afferent-evoked substance P release.
    Kondo I; Marvizon JC; Song B; Salgado F; Codeluppi S; Hua XY; Yaksh TL
    J Neurosci; 2005 Apr; 25(14):3651-60. PubMed ID: 15814796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nonopioidergic mechanism mediating morphine-induced antianalgesia in the mouse spinal cord.
    Wu HE; Thompson J; Sun HS; Leitermann RJ; Fujimoto JM; Tseng LF
    J Pharmacol Exp Ther; 2004 Jul; 310(1):240-6. PubMed ID: 14999057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spinal somatostatin superfusion in vivo affects activity of cat nociceptive dorsal horn neurons: comparison with spinal morphine.
    Sandkühler J; Fu QG; Helmchen C
    Neuroscience; 1990; 34(3):565-76. PubMed ID: 1972267
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of morphine analgesia by lithium: role of peripheral and central opioid receptors.
    Johnston IN; Westbrook RF
    Behav Brain Res; 2004 May; 151(1-2):151-8. PubMed ID: 15084430
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that mu-opioid receptors mediate midbrain "stimulation-produced analgesia" in the freely moving rat.
    Millan MJ; Członkowski A; Herz A
    Neuroscience; 1987 Sep; 22(3):885-96. PubMed ID: 2825072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphine analgesia in the formalin test: reversal by microinjection of quaternary naloxone into the posterior hypothalamic area or periaqueductal gray.
    Manning BH; Franklin KB
    Behav Brain Res; 1998 Apr; 92(1):97-102. PubMed ID: 9588689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential mechanisms mediating beta-endorphin- and morphine-induced analgesia in mice.
    Suh HH; Fujimoto JM; Tseng LL
    Eur J Pharmacol; 1989 Sep; 168(1):61-70. PubMed ID: 2531093
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antagonism of stimulation-produced analgesia by naloxone and N-methyl-D-aspartate: role of opioid and N-methyl-D-aspartate receptors.
    Mehta AK; Halder S; Khanna N; Tandon OP; Sharma KK
    Hum Exp Toxicol; 2012 Jan; 31(1):51-6. PubMed ID: 21803783
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of spinal 5-HT(1A) receptors in morphine analgesia and tolerance in rats.
    Bardin L; Colpaert FC
    Eur J Pain; 2004 Jun; 8(3):253-61. PubMed ID: 15109976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of spinal opioid receptors in the antinociceptive interactions between intrathecal morphine and bupivacaine.
    Tejwani GA; Rattan AK; McDonald JS
    Anesth Analg; 1992 May; 74(5):726-34. PubMed ID: 1314527
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heroin acts on different opioid receptors than morphine in Swiss Webster and ICR mice to produce antinociception.
    Rady JJ; Roerig SC; Fujimoto JM
    J Pharmacol Exp Ther; 1991 Feb; 256(2):448-57. PubMed ID: 1847196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The combination of NMDA antagonism and morphine produces profound antinociception in the rat dorsal horn.
    Chapman V; Dickenson AH
    Brain Res; 1992 Feb; 573(2):321-3. PubMed ID: 1387029
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spinal mechanisms of the analgesic action of electroconvulsive shock.
    Urca G; Nof-Reshef A
    Brain Res; 1985 Aug; 341(1):110-8. PubMed ID: 3840046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential effects of intrathecal midazolam on morphine-induced antinociception in the rat: role of spinal opioid receptors.
    Rattan AK; McDonald JS; Tejwani GA
    Anesth Analg; 1991 Aug; 73(2):124-31. PubMed ID: 1649558
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analgesia produced by low doses of the opiate antagonist naloxone in arthritic rats is reduced in morphine-tolerant animals.
    Kayser V; Besson JM; Guilbaud G
    Brain Res; 1986 Apr; 371(1):37-41. PubMed ID: 3011202
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.