These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 16748587)

  • 1. Direct transformation of fumarate to oxaloacetate, without intermediate formation of malate, by Clostridium saccharobutyricum, strain GR 4.
    Cohen-Bazire G; Cohen GN
    Biochem J; 1949; 45(1):41-5. PubMed ID: 16748587
    [No Abstract]   [Full Text] [Related]  

  • 2. OXALOACETATE, CITRAMALATE AND GLUTAMATE FORMATION FROM PYRUVATE IN BAKER'S YEAST.
    LOSADA M; CANOVAS JL; RUIZ AMIL M
    Biochem Z; 1964 Jul; 340():60-74. PubMed ID: 14317953
    [No Abstract]   [Full Text] [Related]  

  • 3. Crystallographic studies of the binding of ligands to the dicarboxylate site of Complex II, and the identity of the ligand in the "oxaloacetate-inhibited" state.
    Huang LS; Shen JT; Wang AC; Berry EA
    Biochim Biophys Acta; 2006; 1757(9-10):1073-83. PubMed ID: 16935256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. METABOLISM OF PROPIONATE BY SHEEP LIVER. INTERRELATIONS OF PROPIONATE AND GLUTAMATE IN AGED MITOCHONDRIA.
    SMITH RM; OSBORNE-WHITE WS; RUSSELL GR
    Biochem J; 1965 May; 95(2):431-6. PubMed ID: 14340093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disequilibrium in the malate dehydrogenase reaction in rat liver mitochondria in vivo.
    Heath DF; Phillips JC
    Biochem J; 1972 Apr; 127(3):453-70. PubMed ID: 4342489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Bacterial oxidation of 1-malic acid in the presence of an oxaloacetic acid oxidation inhibitor].
    LWOFF A; AUDUREAU A; CAILLEAU R
    C R Hebd Seances Acad Sci; 1947 Jan; 224(4):303-5. PubMed ID: 20256038
    [No Abstract]   [Full Text] [Related]  

  • 7. VASCULAR EFFECTS OF THE KREBS INTERMEDIATE METABOLITES.
    FROHLICH ED
    Am J Physiol; 1965 Jan; 208():149-53. PubMed ID: 14253139
    [No Abstract]   [Full Text] [Related]  

  • 8. Fumarate permeation in normal and acidotic rat kidney mitochondria: fumarate/malate and fumarate/aspartate translocators.
    Atlante A; Gagliardi S; Passarella S
    Biochem Biophys Res Commun; 1998 Feb; 243(3):711-8. PubMed ID: 9500979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interrelationships of oxalacetic and l-malic acids in carbon dioxide fixation.
    UTTER MF
    J Biol Chem; 1951 Feb; 188(2):847-63. PubMed ID: 14824174
    [No Abstract]   [Full Text] [Related]  

  • 10. The anomalous kinetics of coupled aspartate aminotransferase and malate dehydrogenase. Evidence for compartmentation of oxaloacetate.
    Bryce CF; Williams DC; John RA; Fasella P
    Biochem J; 1976 Mar; 153(3):571-7. PubMed ID: 942372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.
    Niikura M; Komatsuya K; Inoue SI; Matsuda R; Asahi H; Inaoka DK; Kita K; Kobayashi F
    Malar J; 2017 Jun; 16(1):247. PubMed ID: 28606087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Factors affecting the translocation of oxaloacetate and L-malate into rat liver mitochondria.
    Haslam JM; Griffiths DE
    Biochem J; 1968 Oct; 109(5):921-8. PubMed ID: 4235143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolic behavior and enzymatic aspects of denitrifying EBPR sludge in a continuous-flow anaerobic-anoxic system.
    Zafiriadis I; Ntougias S; Kapagiannidis AG; Aivasidis A
    Appl Biochem Biotechnol; 2013 Oct; 171(4):939-53. PubMed ID: 23912208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beta-poly(L-malate) production by non-growing microplasmodia of Physarum polycephalum. Effects of metabolic intermediates and inhibitors.
    Lee BS; Holler E
    FEMS Microbiol Lett; 2000 Dec; 193(1):69-74. PubMed ID: 11094281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tricarboxylic acid cycle intermediates in chronic renal failure.
    Biasioli S; Feriani M; Bigi L; Dell'Aquila R; Bragantini L; Chiaramonte S; Fabris A; Brendolan A; Ronco C; Pradella M
    Nephrol Dial Transplant; 1987; 2(5):313-5. PubMed ID: 3122107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymic formation of oxaloacetate from erythro beta-hydroxyaspartate.
    KORNBERG HL; MORRIS JG
    Biochim Biophys Acta; 1962 Dec; 65():537-40. PubMed ID: 14034814
    [No Abstract]   [Full Text] [Related]  

  • 17. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blue native polyacrylamide gel electrophoresis and the monitoring of malate- and oxaloacetate-producing enzymes.
    Singh R; Chénier D; Bériault R; Mailloux R; Hamel RD; Appanna VD
    J Biochem Biophys Methods; 2005 Sep; 64(3):189-99. PubMed ID: 16154636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of growth substrates on oxaloacetate formation from beta-hydroxyasparate by Micrococcus denitrificans.
    KORNBERG HL; MORRIS JG
    Biochim Biophys Acta; 1962 Dec; 65():378-80. PubMed ID: 14034815
    [No Abstract]   [Full Text] [Related]  

  • 20. Formation of oxaloacetate from unnatural (-)-tartrate by fumarate hydratase.
    Nakamura S; Ogata H
    Biochem J; 1967 Jun; 103(3):77P-78P. PubMed ID: 6049400
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.