These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 16749308)

  • 1. Online oxygen control for sulfide oxidation in anaerobic treatment of high-sulfate wastewater.
    Khanal SK; Huang JC
    Water Environ Res; 2006 Apr; 78(4):397-408. PubMed ID: 16749308
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of ORP (oxidation-reduction potential) to control oxygen dosing for online sulfide oxidation in anaerobic treatment of high sulfate wastewater.
    Khanal SK; Shang C; Huang JC
    Water Sci Technol; 2003; 47(12):183-9. PubMed ID: 12926687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater.
    Khanal SK; Huang JC
    Water Res; 2003 May; 37(9):2053-62. PubMed ID: 12691890
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of high influent sulfate on anaerobic wastewater treatment.
    Khanal SK; Huang JC
    Water Environ Res; 2005; 77(7):3037-46. PubMed ID: 16381151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anoxic sulfide oxidation in wastewater of sewer networks.
    Yang W; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel up-flow inner-cycle anoxic bioreactor (UIAB) system for the treatment of sulfide wastewater from purification of biogas.
    Song Z; Li Q; Wang D; Zhang J; Xing J
    Water Sci Technol; 2012; 65(6):1033-40. PubMed ID: 22377999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of high-sulfate wastewater treatment by two-phase anaerobic digestion process with Jet-loop anaerobic fluidized bed.
    Wei CH; Wang WX; Deng ZY; Wu CF
    J Environ Sci (China); 2007; 19(3):264-70. PubMed ID: 17918585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotreatment of sulfate-rich wastewater in an anaerobic/micro-aerobic bioreactor system.
    Chuang SH; Pai TY; Horng RY
    Environ Technol; 2005 Sep; 26(9):993-1001. PubMed ID: 16196408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system.
    Gutierrez O; Mohanakrishnan J; Sharma KR; Meyer RL; Keller J; Yuan Z
    Water Res; 2008 Nov; 42(17):4549-61. PubMed ID: 18760816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of ethanol on sulfate reduction and methanogenesis].
    Wang Q; Liu B; Yan DD; Li S; Chen ZZ
    Huan Jing Ke Xue; 2009 Mar; 30(3):924-9. PubMed ID: 19432352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfidogenic biotreatment of synthetic acid mine drainage and sulfide oxidation in anaerobic baffled reactor.
    Bekmezci OK; Ucar D; Kaksonen AH; Sahinkaya E
    J Hazard Mater; 2011 May; 189(3):670-6. PubMed ID: 21320747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alleviating sulfide toxicity using biochar during anaerobic treatment of sulfate-laden wastewater.
    Oliveira FR; Surendra KC; Jaisi DP; Lu H; Unal-Tosun G; Sung S; Khanal SK
    Bioresour Technol; 2020 Apr; 301():122711. PubMed ID: 31927459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Screening of biological sulfate reduction conditions for sulfidogenesis promotion using a methanogenic granular sludge.
    Mora M; Lafuente J; Gabriel D
    Chemosphere; 2018 Nov; 210():557-566. PubMed ID: 30029148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological sulfide oxidation in a fluidized bed reactor.
    Annachhatre AP; Suktrakoolvait S
    Environ Technol; 2001 Jun; 22(6):661-72. PubMed ID: 11482386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of sludge properties for sewage treatment in a practical-scale down-flow hanging sponge reactor: oxygen consumption and removal of organic matter, ammonium, and sulfur.
    Nomoto N; Hatamoto M; Ali M; Jayaswal K; Iguchi A; Okubo T; Takahashi M; Kubota K; Tagawa T; Uemura S; Yamaguchi T; Harada H
    Water Sci Technol; 2018 Feb; 77(3-4):608-616. PubMed ID: 29431705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization.
    Guo J; Wang J; Qiu Y; Sun J; Jiang F
    Chemosphere; 2019 Dec; 236():124381. PubMed ID: 31545190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification.
    Janssen AJ; Lens PN; Stams AJ; Plugge CM; Sorokin DY; Muyzer G; Dijkman H; Van Zessen E; Luimes P; Buisman CJ
    Sci Total Environ; 2009 Feb; 407(4):1333-43. PubMed ID: 19027933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.