These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 16749461)
41. Enhancing toxic metal removal from acidified sludge with nitrite addition. Du F; Freguia S; Yuan Z; Keller J; Pikaar I Environ Sci Technol; 2015 May; 49(10):6257-63. PubMed ID: 25872418 [TBL] [Abstract][Full Text] [Related]
42. Study on risk management of heavy metals for reuse of biosolids. Ozaki M; Suwa M; Suzuki Y Water Sci Technol; 2006; 53(11):189-95. PubMed ID: 16862789 [TBL] [Abstract][Full Text] [Related]
43. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study. Merzouk B; Gourich B; Sekki A; Madani K; Chibane M J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259 [TBL] [Abstract][Full Text] [Related]
44. Application of a bio-electrochemical reactor process to direct treatment of metal pickling wastewater containing heavy metals and high strength nitrate. Watanabe T; Jin HW; Cho KJ; Kuroda M Water Sci Technol; 2004; 50(8):111-8. PubMed ID: 15566194 [TBL] [Abstract][Full Text] [Related]
45. The fate of Cu, Zn, Pb and Cd during the pyrolysis of sewage sludge at different temperatures. He YD; Zhai YB; Li CT; Yang F; Chen L; Fan XP; Peng WF; Fu ZM Environ Technol; 2010 Apr; 31(5):567-74. PubMed ID: 20480831 [TBL] [Abstract][Full Text] [Related]
46. Stabilization of heavy metals in wastewater treatment sludge from power plants air heater washing. Saeedi M; Amini HR Waste Manag Res; 2009 May; 27(3):274-80. PubMed ID: 19423607 [TBL] [Abstract][Full Text] [Related]
47. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. Paulino AT; Minasse FA; Guilherme MR; Reis AV; Muniz EC; Nozaki J J Colloid Interface Sci; 2006 Sep; 301(2):479-87. PubMed ID: 16780853 [TBL] [Abstract][Full Text] [Related]
48. Start-up procedures and analysis of heavy metals inhibition on methanogenic activity in EGSB reactor. Colussi I; Cortesi A; Della Vedova L; Gallo V; Robles FK Bioresour Technol; 2009 Dec; 100(24):6290-4. PubMed ID: 19679466 [TBL] [Abstract][Full Text] [Related]
49. Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Hua M; Zhang S; Pan B; Zhang W; Lv L; Zhang Q J Hazard Mater; 2012 Apr; 211-212():317-31. PubMed ID: 22018872 [TBL] [Abstract][Full Text] [Related]
50. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge. Huang H; Yuan X; Zeng G; Zhu H; Li H; Liu Z; Jiang H; Leng L; Bi W Bioresour Technol; 2011 Nov; 102(22):10346-51. PubMed ID: 21940164 [TBL] [Abstract][Full Text] [Related]
51. Stabilization of heavy metals in sludge ceramsite. Xu GR; Zou JL; Li GB Water Res; 2010 May; 44(9):2930-8. PubMed ID: 20219229 [TBL] [Abstract][Full Text] [Related]
52. Microbial biomass: an economical alternative for removal of heavy metals from waste water. Gupta R; Mohapatra H Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288 [TBL] [Abstract][Full Text] [Related]
53. Combined effects of Cu, Cd, Pb, and Zn on the growth and uptake of consortium of Cu-resistant Penicillium sp. A1 and Cd-resistant Fusarium sp. A19. Pan R; Cao L; Zhang R J Hazard Mater; 2009 Nov; 171(1-3):761-6. PubMed ID: 19592158 [TBL] [Abstract][Full Text] [Related]
54. Evaluation of metal hydroxide sludge for reactive dye adsorption in a fixed-bed column system. Netpradit S; Thiravetyan P; Towprayoon S Water Res; 2004 Jan; 38(1):71-8. PubMed ID: 14630104 [TBL] [Abstract][Full Text] [Related]
55. Phragmites australis: a novel biosorbent for the removal of heavy metals from aqueous solution. Southichak B; Nakano K; Nomura M; Chiba N; Nishimura O Water Res; 2006 Jul; 40(12):2295-302. PubMed ID: 16766011 [TBL] [Abstract][Full Text] [Related]
56. Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in Malaysia: post treatment by high quality limestone. Aziz HA; Adlan MN; Ariffin KS Bioresour Technol; 2008 Apr; 99(6):1578-83. PubMed ID: 17540556 [TBL] [Abstract][Full Text] [Related]
57. Industrial wastewater pre-treatment for heavy metal reduction by employing a sorbent-assisted ultrafiltration system. Katsou E; Malamis S; Haralambous KJ Chemosphere; 2011 Jan; 82(4):557-64. PubMed ID: 21167554 [TBL] [Abstract][Full Text] [Related]
58. Effective removal of heavy metals from industrial sludge with the aid of a biodegradable chelating ligand GLDA. Wu Q; Cui Y; Li Q; Sun J J Hazard Mater; 2015; 283():748-54. PubMed ID: 25464318 [TBL] [Abstract][Full Text] [Related]
59. Simultaneous heavy metals removal and municipal sewage sludge dewaterability improvement in bioleaching processes by various inoculums. Shi C; Zhu N; Shang R; Kang N; Wu P World J Microbiol Biotechnol; 2015 Nov; 31(11):1719-28. PubMed ID: 26271772 [TBL] [Abstract][Full Text] [Related]
60. Microbial and plant derived biomass for removal of heavy metals from wastewater. Ahluwalia SS; Goyal D Bioresour Technol; 2007 Sep; 98(12):2243-57. PubMed ID: 16427277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]