These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 16749616)

  • 21. Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism.
    Lee J; Kim J; Lee C; Yun Z; Choi E
    Water Sci Technol; 2005; 52(10-11):569-78. PubMed ID: 16459835
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrocoagulation of a real reactive dyebath effluent using aluminum and stainless steel electrodes.
    Arslan-Alaton I; Kabdaşli I; Hanbaba D; Kuybu E
    J Hazard Mater; 2008 Jan; 150(1):166-73. PubMed ID: 17945416
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical treatment and operating cost analysis of textile wastewater using sacrificial iron electrodes.
    Kobya M; Demirbas E; Akyol A
    Water Sci Technol; 2009; 60(9):2261-70. PubMed ID: 19901457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of phosphorus recovery requirements on Swedish sludge management.
    Levlin E; Löwén M; Stark K; Hultman B
    Water Sci Technol; 2002; 46(4-5):435-40. PubMed ID: 12361045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of sponge size and type on the performance of an up-flow sponge bioreactor in primary treated sewage effluent treatment.
    Nguyen TT; Ngo HH; Guo W; Johnston A; Listowski A
    Bioresour Technol; 2010 Mar; 101(5):1416-20. PubMed ID: 19713102
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of leachate by electrocoagulation using aluminum and iron electrodes.
    Ilhan F; Kurt U; Apaydin O; Gonullu MT
    J Hazard Mater; 2008 Jun; 154(1-3):381-9. PubMed ID: 18036737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inhibition of chemical dose in biological phosphorus and nitrogen removal in simultaneous chemical precipitation for phosphorus removal.
    Liu Y; Shi H; Li W; Hou Y; He M
    Bioresour Technol; 2011 Mar; 102(5):4008-12. PubMed ID: 21215613
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of rinse water from zinc phosphate coating by batch and continuous electrocoagulation processes.
    Kobya M; Demirbas E; Dedeli A; Sensoy MT
    J Hazard Mater; 2010 Jan; 173(1-3):326-34. PubMed ID: 19748183
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorus removal from SBR with controlled denitrification for weak sewage.
    Choi E; Park H; Rhu D
    Water Sci Technol; 2001; 43(3):159-65. PubMed ID: 11381900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment of pulp and paper industry bleaching effluent by electrocoagulant process.
    Sridhar R; Sivakumar V; Prince Immanuel V; Prakash Maran J
    J Hazard Mater; 2011 Feb; 186(2-3):1495-502. PubMed ID: 21227578
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hanced biological phosphorus removal in membrane bioreactors.
    Adam C; Gnirss R; Lesjean B; Buisson H; Krauma M
    Water Sci Technol; 2002; 46(4-5):281-6. PubMed ID: 12361022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous nitrification-denitrification and phosphorus removal in a fixed bed sequencing batch reactor (FBSBR).
    Rahimi Y; Torabian A; Mehrdadi N; Shahmoradi B
    J Hazard Mater; 2011 Jan; 185(2-3):852-7. PubMed ID: 20965654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced biological phosphorus removal process implemented in membrane bioreactors to improve phosphorous recovery and recycling.
    Lesjean B; Gnirss R; Adam C; Kraume M; Luck F
    Water Sci Technol; 2003; 48(1):87-94. PubMed ID: 12926624
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process.
    Wang DB; Li XM; Yang Q; Zeng GM; Liao DX; Zhang J
    Bioresour Technol; 2008 Sep; 99(13):5466-73. PubMed ID: 18082396
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor.
    Ujang Z; Salim MR; Khor SL
    Water Sci Technol; 2002; 46(9):193-200. PubMed ID: 12448469
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optimum operation conditions of nitrogen and phosphorus removal by a biofilm-activated-sludge system.
    Liu JX; van Groenestijn JW
    J Environ Sci (China); 2003 Jan; 15(1):25-30. PubMed ID: 12602598
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Techno-economical evaluation of electrocoagulation for the textile wastewater using different electrode connections.
    Kobya M; Bayramoglu M; Eyvaz M
    J Hazard Mater; 2007 Sep; 148(1-2):311-8. PubMed ID: 17368931
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Production of polyhydroxybutyrate by activated sludge performing enhanced biological phosphorus removal.
    Rodgers M; Wu G
    Bioresour Technol; 2010 Feb; 101(3):1049-53. PubMed ID: 19765985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Treatment of bio-digester effluent by electrocoagulation using iron electrodes.
    Kumar M; Ponselvan FI; Malviya JR; Srivastava VC; Mall ID
    J Hazard Mater; 2009 Jun; 165(1-3):345-52. PubMed ID: 19036506
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.