These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 16749617)

  • 1. Improving the removal of anions by coagulation and dissolved air flotation in wastewater reclamation.
    Chuang SH; Chang WC; Chang TC; You SJ
    Environ Technol; 2006 May; 27(5):493-500. PubMed ID: 16749617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of hydrocarbons from petrochemical wastewater by dissolved air flotation.
    Galil NI; Wolf D
    Water Sci Technol; 2001; 43(8):107-13. PubMed ID: 11394262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low cost reclamation using the Advanced Integrated Wastewater Pond Systems Technology and reverse osmosis.
    Downing JB; Bracco E; Green FB; Ku AY; Lundquist TJ; Zubieta IX; Oswald WJ
    Water Sci Technol; 2002; 45(1):117-25. PubMed ID: 11833725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autopsy of high-pressure membranes to compare effectiveness of MF and UF pretreatment in water reclamation.
    Kim J; DiGiano FA; Reardon RD
    Water Res; 2008 Feb; 42(3):697-706. PubMed ID: 17961627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of immersed MF (IMF) followed by reverse osmosis (RO) membrane for wastewater reclamation: A case study in Malaysia.
    Ujang Z; Ng KS; Tg Hamzah TH; Roger P; Ismail MR; Shahabudin SM; Abdul Hamid MH
    Water Sci Technol; 2007; 56(9):103-8. PubMed ID: 18025737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pretreatment of bakery wastewater by coagulation-flocculation and dissolved air flotation.
    Liu JC; Lien CS
    Water Sci Technol; 2001; 43(8):131-7. PubMed ID: 11394265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation.
    Hu CY; Lo SL; Kuan WH; Lee YD
    Water Res; 2005 Mar; 39(5):895-901. PubMed ID: 15743636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of hazardous wastewater contaminated by nitrocellulose.
    El-Diwani G; El-Ibiari NN; Hawash SI
    J Hazard Mater; 2009 Aug; 167(1-3):830-4. PubMed ID: 19237246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of dissolved air flotation technology from the first generation to the newest (third) one (DAF in turbulent flow conditions).
    Kiuru HJ
    Water Sci Technol; 2001; 43(8):1-7. PubMed ID: 11394261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of adsorbent addition on floc formation and clarification.
    Younker JM; Walsh ME
    Water Res; 2016 Jul; 98():1-8. PubMed ID: 27064206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloidal silica removal in coagulation processes for wastewater reuse in a high-tech industrial park.
    Chuang SH; Chang TC; Ouyang CF; Leu JM
    Water Sci Technol; 2007; 55(1-2):187-95. PubMed ID: 17305139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential of constructed wetland systems for treating tannery industrial wastewater.
    Kaseva ME; Mbuligwe SE
    Water Sci Technol; 2010; 61(4):1043-52. PubMed ID: 20182085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of floc size and hydraulic detention time on the performance of a dissolved air flotation (DAF) pilot unit in the light of a mathematical model.
    Moruzzi RB; Reali MA
    Bioprocess Biosyst Eng; 2014 Dec; 37(12):2445-52. PubMed ID: 24871277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of alumino-humic flocs in relation to DAF performance.
    Bache DH; Rasool E
    Water Sci Technol; 2001; 43(8):203-8. PubMed ID: 11394275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modelling of floc-bubble aggregate rise rates in dissolved air flotation.
    Haarhoff J; Edzwald JK
    Water Sci Technol; 2001; 43(8):175-84. PubMed ID: 11394271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated pretreatment with capacitive deionization for reverse osmosis reject recovery from water reclamation plant.
    Lee LY; Ng HY; Ong SL; Tao G; Kekre K; Viswanath B; Lay W; Seah H
    Water Res; 2009 Oct; 43(18):4769-77. PubMed ID: 19700181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of inclined plate sedimentation and dissolved air flotation for the minimisation of subsequent nitrogenous disinfection by-product formation.
    Chu WH; Gao NY; Templeton MR; Yin DQ
    Chemosphere; 2011 Apr; 83(5):647-51. PubMed ID: 21420143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of RO brine-towards sustainable water reclamation practice.
    Ng HY; Lee LY; Ong SL; Tao G; Viawanath B; Kekre K; Lay W; Seah H
    Water Sci Technol; 2008; 58(4):931-6. PubMed ID: 18776632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatability of organic fractions derived from secondary effluent by reverse osmosis membrane.
    Hu JY; Ong SL; Shan JH; Kang JB; Ng WJ
    Water Res; 2003 Nov; 37(19):4801-9. PubMed ID: 14568067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of emulsified fuel oils from brackish and pond water by dissolved air flotation with and without polyelectrolyte use: pilot-scale investigation for estuarine and near shore applications.
    Tansel B; Pascual B
    Chemosphere; 2011 Nov; 85(7):1182-6. PubMed ID: 21813155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.