These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 16749688)

  • 1. Effects of solid-to-solution ratio on uranium(VI) adsorption and its implications.
    Cheng T; Barnett MO; Roden EE; Zhuang J
    Environ Sci Technol; 2006 May; 40(10):3243-7. PubMed ID: 16749688
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of phosphate on uranium(VI) adsorption to goethite-coated sand.
    Cheng T; Barnett MO; Roden EE; Zhuang J
    Environ Sci Technol; 2004 Nov; 38(22):6059-65. PubMed ID: 15573607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive transport of uranium(VI) and phosphate in a goethite-coated sand column: an experimental study.
    Cheng T; Barnett MO; Roden EE; Zhuang J
    Chemosphere; 2007 Jul; 68(7):1218-23. PubMed ID: 17349670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive surface complexation modeling of uranium(VI) adsorption onto quartz-sand dominated sediments.
    Dong W; Wan J
    Environ Sci Technol; 2014 Jun; 48(12):6569-77. PubMed ID: 24865372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removing uranium (VI) from aqueous solution with insoluble humic acid derived from leonardite.
    Meng F; Yuan G; Larson SL; Ballard JH; Waggoner CA; Arslan Z; Han FX
    J Environ Radioact; 2017 Dec; 180():1-8. PubMed ID: 28968541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of uranium(VI) desorption from contaminated sediments: effect of geochemical conditions and model evaluation.
    Liu C; Shi Z; Zachara JM
    Environ Sci Technol; 2009 Sep; 43(17):6560-6. PubMed ID: 19764217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phosphate-Induced Immobilization of Uranium in Hanford Sediments.
    Pan Z; Giammar DE; Mehta V; Troyer LD; Catalano JG; Wang Z
    Environ Sci Technol; 2016 Dec; 50(24):13486-13494. PubMed ID: 27993066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of surface area normalisation for interpreting distribution coefficients (K(d)) for uranium sorption.
    Payne TE; Brendler V; Comarmond MJ; Nebelung C
    J Environ Radioact; 2011 Oct; 102(10):888-95. PubMed ID: 20452709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of uranium interactions with hydroxyapatite: implications for groundwater remediation.
    Fuller CC; Bargar JR; Davis JA; Piana MJ
    Environ Sci Technol; 2002 Jan; 36(2):158-65. PubMed ID: 11827049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for estimating adsorbed uranium(VI) and distribution coefficients of contaminated sediments.
    Kohler M; Curtis GP; Meece DE; Davis JA
    Environ Sci Technol; 2004 Jan; 38(1):240-7. PubMed ID: 14740742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. U(VI) adsorption on aquifer sediments at the Hanford Site.
    Um W; Serne RJ; Brown CF; Last GV
    J Contam Hydrol; 2007 Aug; 93(1-4):255-69. PubMed ID: 17499879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uranium(VI) adsorption and surface complexation modeling onto background sediments from the F-Area Savannah River Site.
    Dong W; Tokunaga TK; Davis JA; Wan J
    Environ Sci Technol; 2012 Feb; 46(3):1565-71. PubMed ID: 22191402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface complexation modeling of U(VI) adsorption by aquifer sediments from a former mill tailings site at Rifle, Colorado.
    Hyun SP; Fox PM; Davis JA; Campbell KM; Hayes KF; Long PE
    Environ Sci Technol; 2009 Dec; 43(24):9368-73. PubMed ID: 20000531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying key controls on the behavior of an acidic-U(VI) plume in the Savannah River Site using reactive transport modeling.
    Bea SA; Wainwright H; Spycher N; Faybishenko B; Hubbard SS; Denham ME
    J Contam Hydrol; 2013 Aug; 151():34-54. PubMed ID: 23707874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Biosorption and Biomineralization of Uranium(VI) from Aqueous Solutions by Landoltia Punctata].
    Nie XQ; Dong FQ; Liu N; Zhang D; Liu MX; Yang J; Zhang W
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2613-9. PubMed ID: 26669177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adsorption of uranium(VI) and thorium(IV) by insolubilized humic acid from Ajloun soil - Jordan.
    Khalili F; Al-Banna G
    J Environ Radioact; 2015 Aug; 146():16-26. PubMed ID: 25890216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of calcium carbonate on U(VI) sorption to soils.
    Zheng Z; Tokunaga TK; Wan J
    Environ Sci Technol; 2003 Dec; 37(24):5603-8. PubMed ID: 14717170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Staphylococcus epidermidis on U(VI) sequestration by Al-goethite.
    Zhang Z; Liu H; Liu L; Song W; Sun Y
    J Hazard Mater; 2019 Apr; 368():52-62. PubMed ID: 30665108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fate and transport of uranium (VI) in weathered saprolite.
    Kim YJ; Brooks SC; Zhang F; Parker JC; Moon JW; Roh Y
    J Environ Radioact; 2015 Jan; 139():154-162. PubMed ID: 25464052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of uranium(VI) lability and solubility in aerobic soils.
    Izquierdo M; Young SD; Bailey EH; Crout NMJ; Lofts S; Chenery SR; Shaw G
    Chemosphere; 2020 Nov; 258():127246. PubMed ID: 32535442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.