These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 16750212)
1. Evaluation and comparison of alternatives to Protein A chromatography Mimetic and hydrophobic charge induction chromatographic stationary phases. Ghose S; Hubbard B; Cramer SM J Chromatogr A; 2006 Jul; 1122(1-2):144-52. PubMed ID: 16750212 [TBL] [Abstract][Full Text] [Related]
2. Comparison of standard and new generation hydrophobic interaction chromatography resins in the monoclonal antibody purification process. Chen J; Tetrault J; Ley A J Chromatogr A; 2008 Jan; 1177(2):272-81. PubMed ID: 17709111 [TBL] [Abstract][Full Text] [Related]
3. Protein interactions in hydrophobic charge induction chromatography (HCIC). Ghose S; Hubbard B; Cramer SM Biotechnol Prog; 2005; 21(2):498-508. PubMed ID: 15801790 [TBL] [Abstract][Full Text] [Related]
4. Protein aggregation kinetics during Protein A chromatography. Case study for an Fc fusion protein. Shukla AA; Gupta P; Han X J Chromatogr A; 2007 Nov; 1171(1-2):22-8. PubMed ID: 17920607 [TBL] [Abstract][Full Text] [Related]
5. Purification of an Fc-fusion biologic: clearance of multiple product related impurities by hydrophobic interaction chromatography. Evans DR; Macniven RP; Labanca M; Walker J; Notarnicola SM J Chromatogr A; 2008 Jan; 1177(2):265-71. PubMed ID: 17692855 [TBL] [Abstract][Full Text] [Related]
6. Antibody variable region interactions with Protein A: implications for the development of generic purification processes. Ghose S; Allen M; Hubbard B; Brooks C; Cramer SM Biotechnol Bioeng; 2005 Dec; 92(6):665-73. PubMed ID: 16206278 [TBL] [Abstract][Full Text] [Related]
7. Binding capacity differences for antibodies and Fc-fusion proteins on protein A chromatographic materials. Ghose S; Hubbard B; Cramer SM Biotechnol Bioeng; 2007 Mar; 96(4):768-79. PubMed ID: 16817242 [TBL] [Abstract][Full Text] [Related]
8. Exploration of overloaded cation exchange chromatography for monoclonal antibody purification. Liu HF; McCooey B; Duarte T; Myers DE; Hudson T; Amanullah A; van Reis R; Kelley BD J Chromatogr A; 2011 Sep; 1218(39):6943-52. PubMed ID: 21871630 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of new affinity chromatography resins for polyclonal, oligoclonal and monoclonal antibody pharmaceuticals. Ishihara T; Nakajima N; Kadoya T J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Aug; 878(23):2141-4. PubMed ID: 20591751 [TBL] [Abstract][Full Text] [Related]
10. Use and optimization of a dual-flowrate loading strategy to maximize throughput in protein-a affinity chromatography. Ghose S; Nagrath D; Hubbard B; Brooks C; Cramer SM Biotechnol Prog; 2004; 20(3):830-40. PubMed ID: 15176889 [TBL] [Abstract][Full Text] [Related]
11. Designing new monoclonal antibody purification processes using mixed-mode chromatography sorbents. Toueille M; Uzel A; Depoisier JF; Gantier R J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Apr; 879(13-14):836-43. PubMed ID: 21439915 [TBL] [Abstract][Full Text] [Related]
12. Quantitation of soluble aggregates in recombinant monoclonal antibody cell culture by pH-gradient protein A chromatography. Pan H; Chen K; Pulisic M; Apostol I; Huang G Anal Biochem; 2009 May; 388(2):273-8. PubMed ID: 19268420 [TBL] [Abstract][Full Text] [Related]
13. Rational methods for predicting human monoclonal antibodies retention in protein A affinity chromatography and cation exchange chromatography. Structure-based chromatography design for monoclonal antibodies. Ishihara T; Kadoya T; Yoshida H; Tamada T; Yamamoto S J Chromatogr A; 2005 Nov; 1093(1-2):126-38. PubMed ID: 16233878 [TBL] [Abstract][Full Text] [Related]
14. High-performance monolith affinity chromatography for fast quantitation of immunoglobulin G. Tscheliessnig A; Jungbauer A J Chromatogr A; 2009 Mar; 1216(13):2676-82. PubMed ID: 18703200 [TBL] [Abstract][Full Text] [Related]
15. Studying host cell protein interactions with monoclonal antibodies using high throughput protein A chromatography. Sisodiya VN; Lequieu J; Rodriguez M; McDonald P; Lazzareschi KP Biotechnol J; 2012 Oct; 7(10):1233-41. PubMed ID: 22623327 [TBL] [Abstract][Full Text] [Related]
16. A comparison of protein A chromatographic stationary phases: performance characteristics for monoclonal antibody purification. Liu Z; Mostafa SS; Shukla AA Biotechnol Appl Biochem; 2015; 62(1):37-47. PubMed ID: 24823474 [TBL] [Abstract][Full Text] [Related]
17. Using precipitation by polyamines as an alternative to chromatographic separation in antibody purification processes. Ma J; Hoang H; Myint T; Peram T; Fahrner R; Chou JH J Chromatogr B Analyt Technol Biomed Life Sci; 2010 Mar; 878(9-10):798-806. PubMed ID: 20181538 [TBL] [Abstract][Full Text] [Related]
18. Effect of the conserved oligosaccharides of recombinant monoclonal antibodies on the separation by protein A and protein G chromatography. Gaza-Bulseco G; Hickman K; Sinicropi-Yao S; Hurkmans K; Chumsae C; Liu H J Chromatogr A; 2009 Mar; 1216(12):2382-7. PubMed ID: 19181325 [TBL] [Abstract][Full Text] [Related]
19. Molecular mechanism of hydrophobic charge-induction chromatography: interactions between the immobilized 4-mercaptoethyl-pyridine ligand and IgG. Lin DQ; Tong HF; Wang HY; Shao S; Yao SJ J Chromatogr A; 2012 Oct; 1260():143-53. PubMed ID: 22975355 [TBL] [Abstract][Full Text] [Related]