These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 16750266)

  • 1. Compliance calibration for fatigue crack propagation testing of ultra high molecular weight polyethylene.
    Varadarajan R; Rimnac CM
    Biomaterials; 2006 Sep; 27(27):4693-7. PubMed ID: 16750266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue crack propagation resistance of virgin and highly crosslinked, thermally treated ultra-high molecular weight polyethylene.
    Gencur SJ; Rimnac CM; Kurtz SM
    Biomaterials; 2006 Mar; 27(8):1550-7. PubMed ID: 16303175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiaxial fatigue behavior of conventional and highly crosslinked UHMWPE during cyclic small punch testing.
    Villarraga ML; Kurtz SM; Herr MP; Edidin AA
    J Biomed Mater Res A; 2003 Aug; 66(2):298-309. PubMed ID: 12889000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compliance calibration for fracture testing of anisotropic biological materials.
    Creel JA; Stover SM; Martin RB; Fyhrie DP; Hazelwood SJ; Gibeling JC
    J Mech Behav Biomed Mater; 2009 Oct; 2(5):571-8. PubMed ID: 19627864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue crack propagation behavior of ultra high molecular weight polyethylene under mixed mode conditions.
    Elbert KE; Wright TM; Rimnac CM; Klein RW; Ingraffea AR; Gunsallus K; Bartel DL
    J Biomed Mater Res; 1994 Feb; 28(2):181-7. PubMed ID: 8207029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of degree of crosslinking on the fatigue crack initiation and propagation resistance of orthopedic-grade polyethylene.
    Baker DA; Bellare A; Pruitt L
    J Biomed Mater Res A; 2003 Jul; 66(1):146-54. PubMed ID: 12833441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-tocopherol-doped irradiated UHMWPE for high fatigue resistance and low wear.
    Oral E; Wannomae KK; Hawkins N; Harris WH; Muratoglu OK
    Biomaterials; 2004 Nov; 25(24):5515-22. PubMed ID: 15142733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gamma irradiation alters fatigue-crack behavior and fracture toughness in 1900H and GUR 1050 UHMWPE.
    Cole JC; Lemons JE; Eberhardt AW
    J Biomed Mater Res; 2002; 63(5):559-66. PubMed ID: 12209901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue crack propagation behavior of ultrahigh molecular weight polyethylene.
    Connelly GM; Rimnac CM; Wright TM; Hertzberg RW; Manson JA
    J Orthop Res; 1984; 2(2):119-25. PubMed ID: 6491807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. J-integral fracture toughness and tearing modulus measurement of radiation cross-linked UHMWPE.
    Gomoll A; Wanich T; Bellare A
    J Orthop Res; 2002 Nov; 20(6):1152-6. PubMed ID: 12472222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of sliding locus on subsurface crack formation in ultra-high-molecular-weight polyethylene knee component.
    Todo S; Tomita N; Kitakura T; Yamano Y
    Biomed Mater Eng; 1999; 9(1):13-20. PubMed ID: 10436849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A study of the nanostructure and tensile properties of ultra-high molecular weight polyethylene.
    Turell MB; Bellare A
    Biomaterials; 2004 Aug; 25(17):3389-98. PubMed ID: 15020111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A surface crosslinked UHMWPE stabilized by vitamin E with low wear and high fatigue strength.
    Oral E; Ghali BW; Rowell SL; Micheli BR; Lozynsky AJ; Muratoglu OK
    Biomaterials; 2010 Sep; 31(27):7051-60. PubMed ID: 20579730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of viscoelastic fracture model and non-uniform crack initiation at clinically relevant notches in crosslinked UHMWPE.
    Sirimamilla PA; Furmanski J; Rimnac CM
    J Mech Behav Biomed Mater; 2013 Jan; 17():11-21. PubMed ID: 23127638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface micromechanics of ultrahigh molecular weight polyethylene: Microindentation testing, crosslinking, and material behavior.
    Gilbert JL; Cumber J; Butterfield A
    J Biomed Mater Res; 2002 Aug; 61(2):270-81. PubMed ID: 12007208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peak stress intensity factor governs crack propagation velocity in crosslinked ultrahigh-molecular-weight polyethylene.
    Sirimamilla A; Furmanski J; Rimnac C
    J Biomed Mater Res B Appl Biomater; 2013 Apr; 101(3):430-5. PubMed ID: 23165898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deformation, yielding, fracture and fatigue behavior of conventional and highly cross-linked ultra high molecular weight polyethylene.
    Pruitt LA
    Biomaterials; 2005 Mar; 26(8):905-15. PubMed ID: 15353202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anisotropy and oxidative resistance of highly crosslinked UHMWPE after deformation processing by solid-state ram extrusion.
    Kurtz SM; Mazzucco D; Rimnac CM; Schroeder D
    Biomaterials; 2006 Jan; 27(1):24-34. PubMed ID: 16085308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gamma-irradiation aggravates stress concentration along subsurface grain boundary of ultra-high molecular weight polyethylene (UHMWPE) under sliding fatigue environment.
    Shibata N; Tomita N; Ikeuchi K
    Biomed Mater Eng; 2003; 13(1):35-45. PubMed ID: 12652021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the properties of annealed crosslinked (Crossfire) and conventional polyethylene as hip bearing materials.
    Kurtz SM; Manley M; Wang A; Taylor S; Dumbleton J
    Bull Hosp Jt Dis; 2002-2003; 61(1-2):17-26. PubMed ID: 12828375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.