These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 16750385)

  • 21. Studies of oxidant-induced changes in albumin transport function with a fluorescent probe k-35. Effect of hypochlorite.
    Azizova OA; Aseychev AV; Beckman EM; Moskvina SN; Skotnikova OI; Smolina NV; Gryzunov YA; Dobretsov GE
    Bull Exp Biol Med; 2012 Apr; 152(6):712-6. PubMed ID: 22803171
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hypohalous acid-modified human serum albumin induces neutrophil NADPH oxidase activation, degranulation, and shape change.
    Gorudko IV; Grigorieva DV; Shamova EV; Kostevich VA; Sokolov AV; Mikhalchik EV; Cherenkevich SN; Arnhold J; Panasenko OM
    Free Radic Biol Med; 2014 Mar; 68():326-34. PubMed ID: 24384524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass spectrometric characterization of covalent modification of human serum albumin by 4-hydroxy-trans-2-nonenal.
    Aldini G; Gamberoni L; Orioli M; Beretta G; Regazzoni L; Maffei Facino R; Carini M
    J Mass Spectrom; 2006 Sep; 41(9):1149-61. PubMed ID: 16888752
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparing the efficiencies of hydrazide labels in the study of protein carbonylation in human serum albumin.
    Ugur Z; Coffey CM; Gronert S
    Anal Bioanal Chem; 2012 Sep; 404(5):1399-411. PubMed ID: 22811063
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reactive oxygen species damaged human serum albumin in patients with type 1 diabetes mellitus: biochemical and immunological studies.
    Rasheed Z; Ali R
    Life Sci; 2006 Nov; 79(24):2320-8. PubMed ID: 16945391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complete amino acid sequencing and immunoaffinity clean-up can facilitate screening of various chemical modifications on human serum albumin.
    Goto T; Murata K; Lee SH; Oe T
    Anal Bioanal Chem; 2013 Sep; 405(23):7383-95. PubMed ID: 23846590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification and relative quantification of specific glycation sites in human serum albumin.
    Frolov A; Hoffmann R
    Anal Bioanal Chem; 2010 Jul; 397(6):2349-56. PubMed ID: 20496030
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibody enrichment and mass spectrometry of albumin-Cys34 adducts.
    Chung MK; Grigoryan H; Iavarone AT; Rappaport SM
    Chem Res Toxicol; 2014 Mar; 27(3):400-7. PubMed ID: 24328277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The reactivity of human serum albumin toward trans-4-hydroxy-2-nonenal.
    Liu Q; Simpson DC; Gronert S
    J Mass Spectrom; 2012 Apr; 47(4):411-24. PubMed ID: 22689617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive oxygen species damaged human serum albumin in patients with hepatocellular carcinoma.
    Rasheed Z; Ahmad R; Rasheed N; Ali R
    J Exp Clin Cancer Res; 2007 Sep; 26(3):395-404. PubMed ID: 17987802
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation.
    Yuan Q; Zhu X; Sayre LM
    Chem Res Toxicol; 2007 Jan; 20(1):129-39. PubMed ID: 17226935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitation of Oxidative Modifications of Commercial Human Albumin for Clinical Use.
    Takahashi T; Terada T; Arikawa H; Kizaki K; Terawaki H; Imai H; Itoh Y; Era S
    Biol Pharm Bull; 2016; 39(3):401-8. PubMed ID: 26725709
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The location of the high- and low-affinity bilirubin-binding sites on serum albumin: ligand-competition analysis investigated by circular dichroism.
    Goncharova I; Orlov S; Urbanová M
    Biophys Chem; 2013; 180-181():55-65. PubMed ID: 23838624
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pattern of occurrence and occupancy of carbonylation sites in proteins.
    Rao RS; Møller IM
    Proteomics; 2011 Nov; 11(21):4166-73. PubMed ID: 21919202
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A fluorescence study of human serum albumin binding sites modification by hypochlorite.
    Lissi E; Alicia Biasutti M; Abuin E; León L
    J Photochem Photobiol B; 2009 Feb; 94(2):77-81. PubMed ID: 19036598
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of human serum albumin to single-walled carbon nanotubes activated neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes.
    Lu N; Li J; Tian R; Peng YY
    Chem Res Toxicol; 2014 Jun; 27(6):1070-7. PubMed ID: 24870066
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study of peptides containing modified lysine residues by tandem mass spectrometry: precursor ion scanning of hexanal-modified peptides.
    Fenaille F; Tabet JC; Guy PA
    Rapid Commun Mass Spectrom; 2004; 18(1):67-76. PubMed ID: 14689561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Site-specific modification of positively-charged surfaces on human serum albumin by malondialdehyde.
    Ishii T; Ito S; Kumazawa S; Sakurai T; Yamaguchi S; Mori T; Nakayama T; Uchida K
    Biochem Biophys Res Commun; 2008 Jun; 371(1):28-32. PubMed ID: 18402766
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of dityrosine cross-linked sites in oxidized human serum albumin.
    Annibal A; Colombo G; Milzani A; Dalle-Donne I; Fedorova M; Hoffmann R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 Apr; 1019():147-55. PubMed ID: 26739370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-catalyzed oxidation of human serum albumin does not alter the interactive binding to the two principal drug binding sites.
    Yamasaki K; Nishi K; Anraku M; Taguchi K; Maruyama T; Otagiri M
    Biochem Biophys Rep; 2018 Jul; 14():155-160. PubMed ID: 29872747
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.