BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 16750554)

  • 1. Effects of oxalate and phosphate on the release of arsenic from contaminated soils and arsenic accumulation in wheat.
    Tao Y; Zhang S; Jian W; Yuan C; Shan XQ
    Chemosphere; 2006 Nov; 65(8):1281-7. PubMed ID: 16750554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenate (As) uptake by and distribution in two cultivars of winter wheat (Triticum aestivum L.).
    Geng CN; Zhu YG; Tong YP; Smith SE; Smith FA
    Chemosphere; 2006 Jan; 62(4):608-15. PubMed ID: 16081139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of soil properties and phosphate addition on arsenic uptake from polluted soils by velvetgrass (Holcus lanatus).
    Lewińska K; Karczewska A
    Int J Phytoremediation; 2013; 15(1):91-104. PubMed ID: 23487988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced phytoremediation of arsenic contaminated land.
    Jankong P; Visoottiviseth P; Khokiattiwong S
    Chemosphere; 2007 Aug; 68(10):1906-12. PubMed ID: 17416405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat.
    Liu X; Zhang S; Shan X; Zhu YG
    Chemosphere; 2005 Oct; 61(2):293-301. PubMed ID: 16168752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils.
    Luo L; Zhang S; Shan XQ; Zhu YG
    Chemosphere; 2006 May; 63(8):1273-9. PubMed ID: 16307790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arsenic speciation and mobilization in CCA-contaminated soils: influence of organic matter content.
    Dobran S; Zagury GJ
    Sci Total Environ; 2006 Jul; 364(1-3):239-50. PubMed ID: 16055167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arsenic bioaccessibility in CCA-contaminated soils: influence of soil properties, arsenic fractionation, and particle-size fraction.
    Girouard E; Zagury GJ
    Sci Total Environ; 2009 Apr; 407(8):2576-85. PubMed ID: 19211134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of forms and rates of potassium fertilizers on cadmium uptake by two cultivars of spring wheat (Triticum aestivum, L.).
    Zhao ZQ; Zhu YG; Li HY; Smith SE; Smith FA
    Environ Int; 2004 Jan; 29(7):973-8. PubMed ID: 14592574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cd accumulation in roots and shoots of durum wheat: the roles of transpiration rate and apoplastic bypass.
    Van der Vliet L; Peterson C; Hale B
    J Exp Bot; 2007; 58(11):2939-47. PubMed ID: 17804431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytotoxicity and uptake of roxarsone by wheat (Triticum aestivum L.) seedlings.
    Fu QL; Blaney L; Zhou DM
    Environ Pollut; 2016 Dec; 219():210-218. PubMed ID: 27814537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils.
    Song NH; Yin XL; Chen GF; Yang H
    Chemosphere; 2007 Aug; 68(9):1779-87. PubMed ID: 17462703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impacts of silicon addition on arsenic fractionation in soils and arsenic speciation in Panax notoginseng planted in soils contaminated with high levels of arsenic.
    Yang Y; Zhang A; Chen Y; Liu J; Cao H
    Ecotoxicol Environ Saf; 2018 Oct; 162():400-407. PubMed ID: 30015185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Search for a plant for phytoremediation--what can we learn from field and hydroponic studies?
    Zabłudowska E; Kowalska J; Jedynak L; Wojas S; Skłodowska A; Antosiewicz DM
    Chemosphere; 2009 Oct; 77(3):301-7. PubMed ID: 19733893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced reductive extraction of arsenic from contaminated soils by a combination of dithionite and oxalate.
    Kim EJ; Baek K
    J Hazard Mater; 2015 Mar; 284():19-26. PubMed ID: 25463213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenic accumulation and distribution in relation to young seedling growth in Atriplex atacamensis Phil.
    Vromman D; Flores-Bavestrello A; Šlejkovec Z; Lapaille S; Teixeira-Cardoso C; Briceño M; Kumar M; Martínez JP; Lutts S
    Sci Total Environ; 2011 Dec; 412-413():286-95. PubMed ID: 22051550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.