These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 16750797)
1. Targeting pain-suppressed behaviors in preclinical assays of pain and analgesia: effects of morphine on acetic acid-suppressed feeding in C57BL/6J mice. Stevenson GW; Bilsky EJ; Negus SS J Pain; 2006 Jun; 7(6):408-16. PubMed ID: 16750797 [TBL] [Abstract][Full Text] [Related]
2. Targeting pain-depressed behaviors in preclinical assays of pain and analgesia: drug effects on acetic acid-depressed locomotor activity in ICR mice. Stevenson GW; Cormier J; Mercer H; Adams C; Dunbar C; Negus SS; Bilsky EJ Life Sci; 2009 Aug; 85(7-8):309-15. PubMed ID: 19559034 [TBL] [Abstract][Full Text] [Related]
3. Rationale and methods for assessment of pain-depressed behavior in preclinical assays of pain and analgesia. Negus SS; Bilsky EJ; Do Carmo GP; Stevenson GW Methods Mol Biol; 2010; 617():79-91. PubMed ID: 20336415 [TBL] [Abstract][Full Text] [Related]
4. LPK-26, a novel kappa-opioid receptor agonist with potent antinociceptive effects and low dependence potential. Tao YM; Li QL; Zhang CF; Xu XJ; Chen J; Ju YW; Chi ZQ; Long YQ; Liu JG Eur J Pharmacol; 2008 Apr; 584(2-3):306-11. PubMed ID: 18353307 [TBL] [Abstract][Full Text] [Related]
5. In vivo pharmacological characterization of SoRI 9409, a nonpeptidic opioid mu-agonist/delta-antagonist that produces limited antinociceptive tolerance and attenuates morphine physical dependence. Wells JL; Bartlett JL; Ananthan S; Bilsky EJ J Pharmacol Exp Ther; 2001 May; 297(2):597-605. PubMed ID: 11303048 [TBL] [Abstract][Full Text] [Related]
6. Analgesic activity of ZC88, a novel N-type voltage-dependent calcium channel blocker, and its modulation of morphine analgesia, tolerance and dependence. Meng G; Wu N; Zhang C; Su RB; Lu XQ; Liu Y; Yun LH; Zheng JQ; Li J Eur J Pharmacol; 2008 May; 586(1-3):130-8. PubMed ID: 18374913 [TBL] [Abstract][Full Text] [Related]
7. Isobolographic analysis of multimodal analgesia in an animal model of visceral acute pain. Miranda HF; Prieto JC; Puig MM; Pinardi G Pharmacol Biochem Behav; 2008 Feb; 88(4):481-6. PubMed ID: 18023854 [TBL] [Abstract][Full Text] [Related]
9. Gabapentin action and interaction on the antinociceptive effect of morphine on visceral pain in mice. Meymandi MS; Sepehri G Eur J Anaesthesiol; 2008 Feb; 25(2):129-34. PubMed ID: 17697423 [TBL] [Abstract][Full Text] [Related]
10. Mu antagonist and kappa agonist properties of beta-funaltrexamine (beta-FNA) in vivo: long-lasting spinal analgesia in mice. Qi JA; Heyman JS; Sheldon RJ; Koslo RJ; Porreca F J Pharmacol Exp Ther; 1990 Mar; 252(3):1006-11. PubMed ID: 2156986 [TBL] [Abstract][Full Text] [Related]
11. DAMGO and 6beta-glycine substituted 14-O-methyloxymorphone but not morphine show peripheral, preemptive antinociception after systemic administration in a mouse visceral pain model and high intrinsic efficacy in the isolated rat vas deferens. Al-Khrasani M; Spetea M; Friedmann T; Riba P; Király K; Schmidhammer H; Furst S Brain Res Bull; 2007 Oct; 74(5):369-75. PubMed ID: 17845912 [TBL] [Abstract][Full Text] [Related]
12. Supraspinal antinociceptive effect of apelin-13 in a mouse visceral pain model. Lv SY; Qin YJ; Wang NB; Yang YJ; Chen Q Peptides; 2012 Sep; 37(1):165-70. PubMed ID: 22732665 [TBL] [Abstract][Full Text] [Related]
13. Involvement of I2-imidazoline binding sites in positive and negative morphine analgesia modulatory effects. Gentili F; Cardinaletti C; Carrieri A; Ghelfi F; Mattioli L; Perfumi M; Vesprini C; Pigini M Eur J Pharmacol; 2006 Dec; 553(1-3):73-81. PubMed ID: 17081513 [TBL] [Abstract][Full Text] [Related]
14. Differential itch- and pain-related behavioral responses and µ-opoid modulation in mice. Akiyama T; Carstens MI; Carstens E Acta Derm Venereol; 2010 Nov; 90(6):575-81. PubMed ID: 21057739 [TBL] [Abstract][Full Text] [Related]
15. Effects of morphine on pain-elicited and pain-suppressed behavior in CB1 knockout and wildtype mice. Miller LL; Picker MJ; Schmidt KT; Dykstra LA Psychopharmacology (Berl); 2011 Jun; 215(3):455-65. PubMed ID: 21373789 [TBL] [Abstract][Full Text] [Related]
16. Interaction of mu-opioid receptor agonists and antagonists with the analgesic effect of buprenorphine in mice. Kögel B; Christoph T; Strassburger W; Friderichs E Eur J Pain; 2005 Oct; 9(5):599-611. PubMed ID: 16139189 [TBL] [Abstract][Full Text] [Related]
17. Absence of conditioned place preference or reinstatement with bivalent ligands containing mu-opioid receptor agonist and delta-opioid receptor antagonist pharmacophores. Lenard NR; Daniels DJ; Portoghese PS; Roerig SC Eur J Pharmacol; 2007 Jul; 566(1-3):75-82. PubMed ID: 17383633 [TBL] [Abstract][Full Text] [Related]
18. Nitrocinnamoyl and chlorocinnamoyl derivatives of dihydrocodeinone: in vivo and in vitro characterization of mu-selective agonist and antagonist activity. McLaughlin JP; Hill KP; Jiang Q; Sebastian A; Archer S; Bidlack JM J Pharmacol Exp Ther; 1999 Apr; 289(1):304-11. PubMed ID: 10087018 [TBL] [Abstract][Full Text] [Related]
19. Pharmacological characterization of the ameliorating effect on short-term memory impairment and antinociceptive effect of KT-90 in mice. Hiramatsu M; Hoshino T; Kanematsu K Behav Brain Res; 2005 May; 160(2):374-81. PubMed ID: 15863234 [TBL] [Abstract][Full Text] [Related]
20. Ventral pallidal injections of a mu antagonist block the development of behavioral sensitization to systemic morphine. Johnson PI; Napier TC Synapse; 2000 Oct; 38(1):61-70. PubMed ID: 10941141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]