BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 16751095)

  • 1. Bone formation: The nuclear matrix reloaded.
    Ellies DL; Krumlauf R
    Cell; 2006 Jun; 125(5):840-2. PubMed ID: 16751095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation.
    Dobreva G; Chahrour M; Dautzenberg M; Chirivella L; Kanzler B; Fariñas I; Karsenty G; Grosschedl R
    Cell; 2006 Jun; 125(5):971-86. PubMed ID: 16751105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones.
    Zhang P; Men J; Fu Y; Shan T; Ye J; Wu Y; Tao Z; Liu L; Jiang H
    Cell Tissue Res; 2012 Dec; 350(3):425-37. PubMed ID: 22955562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone.
    Zhou P; Wu G; Zhang P; Xu R; Ge J; Fu Y; Zhang Y; Du Y; Ye J; Cheng J; Jiang H
    Aging (Albany NY); 2016 Sep; 8(9):2006-2011. PubMed ID: 27632702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells.
    Deng Y; Wu S; Zhou H; Bi X; Wang Y; Hu Y; Gu P; Fan X
    Stem Cells Dev; 2013 Aug; 22(16):2278-86. PubMed ID: 23517179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells.
    Qadir AS; Um S; Lee H; Baek K; Seo BM; Lee G; Kim GS; Woo KM; Ryoo HM; Baek JH
    J Cell Biochem; 2015 May; 116(5):730-42. PubMed ID: 25424317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells.
    Kim IS; Jeong SJ; Kim SH; Jung JH; Park YG; Kim SH
    Biochem Biophys Res Commun; 2012 Jan; 417(2):697-703. PubMed ID: 22166200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis.
    Baltzinger M; Ori M; Pasqualetti M; Nardi I; Rijli FM
    Dev Dyn; 2005 Dec; 234(4):858-67. PubMed ID: 16222714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours.
    Conner JR; Hornick JL
    Histopathology; 2013 Jul; 63(1):36-49. PubMed ID: 23701429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells.
    Xie Q; Wang Z; Bi X; Zhou H; Wang Y; Gu P; Fan X
    Biochem Biophys Res Commun; 2014 Mar; 446(1):98-104. PubMed ID: 24565840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway.
    Hu N; Feng C; Jiang Y; Miao Q; Liu H
    Int J Mol Sci; 2015 May; 16(5):10491-506. PubMed ID: 25961955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation.
    Tang W; Li Y; Osimiri L; Zhang C
    J Biol Chem; 2011 Sep; 286(38):32995-3002. PubMed ID: 21828043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Satb2 regulates proliferation and nuclear integrity of pre-osteoblasts.
    Dowrey T; Schwager EE; Duong J; Merkuri F; Zarate YA; Fish JL
    Bone; 2019 Oct; 127():488-498. PubMed ID: 31325654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo.
    Gong Y; Qian Y; Yang F; Wang H; Yu Y
    Eur J Oral Sci; 2014 Jun; 122(3):190-7. PubMed ID: 24666017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of osteoporotic bone marrow stromal cells rejuvenated by the overexpression of SATB2 prevents alveolar bone loss in ovariectomized rats.
    Xu R; Fu Z; Liu X; Xiao T; Zhang P; Du Y; Yuan H; Cheng J; Jiang H
    Exp Gerontol; 2016 Nov; 84():71-79. PubMed ID: 27599698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and function of immunosuppressive molecule human leukocyte antigen G5 in human bone tissue.
    Deschaseaux F; Gaillard J; Langonné A; Chauveau C; Naji A; Bouacida A; Rosset P; Heymann D; De Pinieux G; Rouas-Freiss N; Sensébé L
    FASEB J; 2013 Aug; 27(8):2977-87. PubMed ID: 23592762
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS.
    Britanova O; Akopov S; Lukyanov S; Gruss P; Tarabykin V
    Eur J Neurosci; 2005 Feb; 21(3):658-68. PubMed ID: 15733084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study progress of special AT-rich sequence binding protein 2].
    Qian YY; Wang HJ; Ma D
    Yi Chuan; 2011 Sep; 33(9):947-52. PubMed ID: 21951795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Role of transcription factor special AT-rich binding protein 2 in the osteoblasts differentiation of bone marrow stromal cells].
    Wang Q; Yu YC; Gu ZY; Bi W; Sun J
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Jun; 46(6):360-4. PubMed ID: 21914381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2.
    Wei J; Shi Y; Zheng L; Zhou B; Inose H; Wang J; Guo XE; Grosschedl R; Karsenty G
    J Cell Biol; 2012 May; 197(4):509-21. PubMed ID: 22564414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.