These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16751095)
1. Bone formation: The nuclear matrix reloaded. Ellies DL; Krumlauf R Cell; 2006 Jun; 125(5):840-2. PubMed ID: 16751095 [TBL] [Abstract][Full Text] [Related]
2. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Dobreva G; Chahrour M; Dautzenberg M; Chirivella L; Kanzler B; Fariñas I; Karsenty G; Grosschedl R Cell; 2006 Jun; 125(5):971-86. PubMed ID: 16751105 [TBL] [Abstract][Full Text] [Related]
3. Contribution of SATB2 to the stronger osteogenic potential of bone marrow stromal cells from craniofacial bones. Zhang P; Men J; Fu Y; Shan T; Ye J; Wu Y; Tao Z; Liu L; Jiang H Cell Tissue Res; 2012 Dec; 350(3):425-37. PubMed ID: 22955562 [TBL] [Abstract][Full Text] [Related]
4. SATB2-Nanog axis links age-related intrinsic changes of mesenchymal stem cells from craniofacial bone. Zhou P; Wu G; Zhang P; Xu R; Ge J; Fu Y; Zhang Y; Du Y; Ye J; Cheng J; Jiang H Aging (Albany NY); 2016 Sep; 8(9):2006-2011. PubMed ID: 27632702 [TBL] [Abstract][Full Text] [Related]
5. Effects of a miR-31, Runx2, and Satb2 regulatory loop on the osteogenic differentiation of bone mesenchymal stem cells. Deng Y; Wu S; Zhou H; Bi X; Wang Y; Hu Y; Gu P; Fan X Stem Cells Dev; 2013 Aug; 22(16):2278-86. PubMed ID: 23517179 [TBL] [Abstract][Full Text] [Related]
6. miR-124 negatively regulates osteogenic differentiation and in vivo bone formation of mesenchymal stem cells. Qadir AS; Um S; Lee H; Baek K; Seo BM; Lee G; Kim GS; Woo KM; Ryoo HM; Baek JH J Cell Biochem; 2015 May; 116(5):730-42. PubMed ID: 25424317 [TBL] [Abstract][Full Text] [Related]
7. Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells. Kim IS; Jeong SJ; Kim SH; Jung JH; Park YG; Kim SH Biochem Biophys Res Commun; 2012 Jan; 417(2):697-703. PubMed ID: 22166200 [TBL] [Abstract][Full Text] [Related]
8. Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis. Baltzinger M; Ori M; Pasqualetti M; Nardi I; Rijli FM Dev Dyn; 2005 Dec; 234(4):858-67. PubMed ID: 16222714 [TBL] [Abstract][Full Text] [Related]
9. SATB2 is a novel marker of osteoblastic differentiation in bone and soft tissue tumours. Conner JR; Hornick JL Histopathology; 2013 Jul; 63(1):36-49. PubMed ID: 23701429 [TBL] [Abstract][Full Text] [Related]
10. Effects of miR-31 on the osteogenesis of human mesenchymal stem cells. Xie Q; Wang Z; Bi X; Zhou H; Wang Y; Gu P; Fan X Biochem Biophys Res Commun; 2014 Mar; 446(1):98-104. PubMed ID: 24565840 [TBL] [Abstract][Full Text] [Related]
11. Regulative Effect of Mir-205 on Osteogenic Differentiation of Bone Mesenchymal Stem Cells (BMSCs): Possible Role of SATB2/Runx2 and ERK/MAPK Pathway. Hu N; Feng C; Jiang Y; Miao Q; Liu H Int J Mol Sci; 2015 May; 16(5):10491-506. PubMed ID: 25961955 [TBL] [Abstract][Full Text] [Related]
12. Osteoblast-specific transcription factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. Tang W; Li Y; Osimiri L; Zhang C J Biol Chem; 2011 Sep; 286(38):32995-3002. PubMed ID: 21828043 [TBL] [Abstract][Full Text] [Related]
14. Lentiviral-mediated expression of SATB2 promotes osteogenic differentiation of bone marrow stromal cells in vitro and in vivo. Gong Y; Qian Y; Yang F; Wang H; Yu Y Eur J Oral Sci; 2014 Jun; 122(3):190-7. PubMed ID: 24666017 [TBL] [Abstract][Full Text] [Related]
15. Transplantation of osteoporotic bone marrow stromal cells rejuvenated by the overexpression of SATB2 prevents alveolar bone loss in ovariectomized rats. Xu R; Fu Z; Liu X; Xiao T; Zhang P; Du Y; Yuan H; Cheng J; Jiang H Exp Gerontol; 2016 Nov; 84():71-79. PubMed ID: 27599698 [TBL] [Abstract][Full Text] [Related]
16. Regulation and function of immunosuppressive molecule human leukocyte antigen G5 in human bone tissue. Deschaseaux F; Gaillard J; Langonné A; Chauveau C; Naji A; Bouacida A; Rosset P; Heymann D; De Pinieux G; Rouas-Freiss N; Sensébé L FASEB J; 2013 Aug; 27(8):2977-87. PubMed ID: 23592762 [TBL] [Abstract][Full Text] [Related]
17. Novel transcription factor Satb2 interacts with matrix attachment region DNA elements in a tissue-specific manner and demonstrates cell-type-dependent expression in the developing mouse CNS. Britanova O; Akopov S; Lukyanov S; Gruss P; Tarabykin V Eur J Neurosci; 2005 Feb; 21(3):658-68. PubMed ID: 15733084 [TBL] [Abstract][Full Text] [Related]
18. [Study progress of special AT-rich sequence binding protein 2]. Qian YY; Wang HJ; Ma D Yi Chuan; 2011 Sep; 33(9):947-52. PubMed ID: 21951795 [TBL] [Abstract][Full Text] [Related]
19. [Role of transcription factor special AT-rich binding protein 2 in the osteoblasts differentiation of bone marrow stromal cells]. Wang Q; Yu YC; Gu ZY; Bi W; Sun J Zhonghua Kou Qiang Yi Xue Za Zhi; 2011 Jun; 46(6):360-4. PubMed ID: 21914381 [TBL] [Abstract][Full Text] [Related]
20. miR-34s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. Wei J; Shi Y; Zheng L; Zhou B; Inose H; Wang J; Guo XE; Grosschedl R; Karsenty G J Cell Biol; 2012 May; 197(4):509-21. PubMed ID: 22564414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]