These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16751239)

  • 1. Probing diffusion laws within cellular membranes by Z-scan fluorescence correlation spectroscopy.
    Humpolícková J; Gielen E; Benda A; Fagulova V; Vercammen J; Vandeven M; Hof M; Ameloot M; Engelborghs Y
    Biophys J; 2006 Aug; 91(3):L23-5. PubMed ID: 16751239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Z-scan fluorescence correlation spectroscopy as a tool for diffusion measurements in planar lipid membranes.
    Steinberger T; Macháň R; Hof M
    Methods Mol Biol; 2014; 1076():617-34. PubMed ID: 24108647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization.
    Wawrezinieck L; Rigneault H; Marguet D; Lenne PF
    Biophys J; 2005 Dec; 89(6):4029-42. PubMed ID: 16199500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.
    Gröner N; Capoulade J; Cremer C; Wachsmuth M
    Opt Express; 2010 Sep; 18(20):21225-37. PubMed ID: 20941019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New fluorescence correlation spectroscopy enabling direct observation of spatiotemporal dependence of diffusion constants as an evidence of anomalous transport in extracellular matrices.
    Masuda A; Ushida K; Okamoto T
    Biophys J; 2005 May; 88(5):3584-91. PubMed ID: 15695633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of interaction between cationic lipid-oligonucleotide complexes and cellular membrane lipids using confocal imaging and fluorescence correlation spectroscopy.
    Gordon SP; Berezhna S; Scherfeld D; Kahya N; Schwille P
    Biophys J; 2005 Jan; 88(1):305-16. PubMed ID: 15516528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral mobility of membrane-binding proteins in living cells measured by total internal reflection fluorescence correlation spectroscopy.
    Ohsugi Y; Saito K; Tamura M; Kinjo M
    Biophys J; 2006 Nov; 91(9):3456-64. PubMed ID: 16891361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning fluorescence correlation spectroscopy in model membrane systems.
    Unsay JD; García-Sáez AJ
    Methods Mol Biol; 2013; 1033():185-205. PubMed ID: 23996179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion, transport, and cell membrane organization investigated by imaging fluorescence cross-correlation spectroscopy.
    Sankaran J; Manna M; Guo L; Kraut R; Wohland T
    Biophys J; 2009 Nov; 97(9):2630-9. PubMed ID: 19883607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New concepts for fluorescence correlation spectroscopy on membranes.
    Ries J; Schwille P
    Phys Chem Chem Phys; 2008 Jun; 10(24):3487-97. PubMed ID: 18548154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of organelle shape on fluorescence recovery after photobleaching.
    Sbalzarini IF; Mezzacasa A; Helenius A; Koumoutsakos P
    Biophys J; 2005 Sep; 89(3):1482-92. PubMed ID: 15951382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion in two-component lipid membranes--a fluorescence correlation spectroscopy and monte carlo simulation study.
    Hac AE; Seeger HM; Fidorra M; Heimburg T
    Biophys J; 2005 Jan; 88(1):317-33. PubMed ID: 15501937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatially resolved fluorescence correlation spectroscopy using a spinning disk confocal microscope.
    Sisan DR; Arevalo R; Graves C; McAllister R; Urbach JS
    Biophys J; 2006 Dec; 91(11):4241-52. PubMed ID: 16950838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing plasma membrane dynamics at the single-molecule level.
    Li X; Luu DT; Maurel C; Lin J
    Trends Plant Sci; 2013 Nov; 18(11):617-24. PubMed ID: 23911558
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular diffusion measurement in lipid bilayers over wide concentration ranges: a comparative study.
    Guo L; Har JY; Sankaran J; Hong Y; Kannan B; Wohland T
    Chemphyschem; 2008 Apr; 9(5):721-8. PubMed ID: 18338419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescence correlation spectroscopy: novel variations of an established technique.
    Haustein E; Schwille P
    Annu Rev Biophys Biomol Struct; 2007; 36():151-69. PubMed ID: 17477838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of Lipid and Cell Membrane Organization by the Fluorescence Correlation Spectroscopy Diffusion Law.
    Ng XW; Bag N; Wohland T
    Chimia (Aarau); 2015; 69(3):112-9. PubMed ID: 26507213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence correlation spectroscopy.
    Ferrand P; Wenger J; Rigneault H
    Methods Mol Biol; 2011; 783():181-95. PubMed ID: 21909889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Trapping, deformation, and rotation of giant unilamellar vesicles in octode dielectrophoretic field cages.
    Korlach J; Reichle C; Müller T; Schnelle T; Webb WW
    Biophys J; 2005 Jul; 89(1):554-62. PubMed ID: 15863477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.