These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 16751523)

  • 1. Induction of autophagy by second-fermentation yeasts during elaboration of sparkling wines.
    Cebollero E; Gonzalez R
    Appl Environ Microbiol; 2006 Jun; 72(6):4121-7. PubMed ID: 16751523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autophagy in wine making.
    Cebollero E; Rejas MT; González R
    Methods Enzymol; 2008; 451():163-75. PubMed ID: 19185720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence for yeast autophagy during simulation of sparkling wine aging: a reappraisal of the mechanism of yeast autolysis in wine.
    Cebollero E; Carrascosa AV; Gonzalez R
    Biotechnol Prog; 2005; 21(2):614-6. PubMed ID: 15801807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory and analytical study of rose sparkling wines manufactured by second fermentation in the bottle.
    Hidalgo P; Pueyo E; Pozo-Bayón MA; Martínez-Rodríguez AJ; Martín-Alvarez P; Polo MC
    J Agric Food Chem; 2004 Oct; 52(21):6640-5. PubMed ID: 15479034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression of csc1-1. A plausible strategy to obtain wine yeast strains undergoing accelerated autolysis.
    Cebollero E; Martinez-Rodriguez A; Carrascosa AV; Gonzalez R
    FEMS Microbiol Lett; 2005 May; 246(1):1-9. PubMed ID: 15869955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of ATR-FTIR microspectroscopy to monitor autolysis of Saccharomyces cerevisiae cells in a base wine.
    Cavagna M; Dell'Anna R; Monti F; Rossi F; Torriani S
    J Agric Food Chem; 2010 Jan; 58(1):39-45. PubMed ID: 20050702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enological functions of parietal yeast mannoproteins.
    Caridi A
    Antonie Van Leeuwenhoek; 2006; 89(3-4):417-22. PubMed ID: 16622788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction of a recombinant autolytic wine yeast strain overexpressing the csc1-1 allele.
    Cebollero E; Gonzalez-Ramos D; Gonzalez R
    Biotechnol Prog; 2009; 25(6):1598-604. PubMed ID: 19725125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Yeast Autolysis in Sparkling Wine Aging: Use of Killer and Sensitive Saccharomyces cerevisiae Strains in Co-Culture.
    Lombardi SJ; De Leonardis A; Lustrato G; Testa B; Iorizzo M
    Recent Pat Biotechnol; 2015; 9(3):223-30. PubMed ID: 27076091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions.
    Tudela R; Gallardo-Chacón JJ; Rius N; López-Tamames E; Buxaderas S
    FEMS Yeast Res; 2012 Jun; 12(4):466-76. PubMed ID: 22404819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Torulaspora delbrueckii killer yeasts in the elaboration of base wine and traditional sparkling wine.
    Velázquez R; Zamora E; Álvarez ML; Ramírez M
    Int J Food Microbiol; 2019 Jan; 289():134-144. PubMed ID: 30240984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wine yeast sirtuins and Gcn5p control aging and metabolism in a natural growth medium.
    Orozco H; Matallana E; Aranda A
    Mech Ageing Dev; 2012 May; 133(5):348-58. PubMed ID: 22738658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autophagy gene overexpression in Saccharomyces cerevisiae perturbs subcellular organellar function and accumulates ROS to accelerate cell death with relevance to sparkling wine production.
    Preiss R; Tyrawa C; van der Merwe G
    Appl Microbiol Biotechnol; 2018 Oct; 102(19):8447-8464. PubMed ID: 30120525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of Saccharomyces cerevisiae strains on traditional sparkling wines production.
    Di Gianvito P; Perpetuini G; Tittarelli F; Schirone M; Arfelli G; Piva A; Patrignani F; Lanciotti R; Olivastri L; Suzzi G; Tofalo R
    Food Res Int; 2018 Jul; 109():552-560. PubMed ID: 29803483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodiversity of autolytic ability in flocculent Saccharomyces cerevisiae strains suitable for traditional sparkling wine fermentation.
    Perpetuini G; Di Gianvito P; Arfelli G; Schirone M; Corsetti A; Tofalo R; Suzzi G
    Yeast; 2016 Jul; 33(7):303-12. PubMed ID: 26804203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enological characterization of natural hybrids from Saccharomyces cerevisiae and S. kudriavzevii.
    González SS; Gallo L; Climent MA; Barrio E; Querol A
    Int J Food Microbiol; 2007 May; 116(1):11-8. PubMed ID: 17346840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F; Carrasco P; Pérez-Ortín JE; del Olmo Ml; Aranda A
    Int J Food Microbiol; 2007 Feb; 114(1):83-91. PubMed ID: 17187885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of mother sediment on yeast growth, biodiversity, and ethanol production during fermentation of Vinsanto wine.
    Domizio P; Mannazzu I; Ciani M
    Int J Food Microbiol; 2009 Jan; 129(1):83-7. PubMed ID: 19027185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic characterization of a wild-type wine strain of Saccharomyces cerevisiae.
    Trabalzini L; Paffetti A; Ferro E; Scaloni A; Talamo F; Millucci L; Martelli P; Santucci A
    Ital J Biochem; 2003 Dec; 52(4):145-53. PubMed ID: 15141481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.