BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 16751539)

  • 1. Three enzymes for trehalose synthesis in Bradyrhizobium cultured bacteria and in bacteroids from soybean nodules.
    Streeter JG; Gomez ML
    Appl Environ Microbiol; 2006 Jun; 72(6):4250-5. PubMed ID: 16751539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional role of Bradyrhizobium japonicum trehalose biosynthesis and metabolism genes during physiological stress and nodulation.
    Sugawara M; Cytryn EJ; Sadowsky MJ
    Appl Environ Microbiol; 2010 Feb; 76(4):1071-81. PubMed ID: 20023090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymes of alpha,alpha-Trehalose Metabolism in Soybean Nodules.
    Salminen SO; Streeter JG
    Plant Physiol; 1986 Jun; 81(2):538-41. PubMed ID: 16664852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress.
    Cytryn EJ; Sangurdekar DP; Streeter JG; Franck WL; Chang WS; Stacey G; Emerich DW; Joshi T; Xu D; Sadowsky MJ
    J Bacteriol; 2007 Oct; 189(19):6751-62. PubMed ID: 17660288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An overview of the metabolic differences between Bradyrhizobium japonicum 110 bacteria and differentiated bacteroids from soybean (Glycine max) root nodules: an in vitro 13C- and 31P-nuclear magnetic resonance spectroscopy study.
    Vauclare P; Bligny R; Gout E; Widmer F
    FEMS Microbiol Lett; 2013 Jun; 343(1):49-56. PubMed ID: 23480054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of pyridine nucleotides under symbiotic and non-symbiotic conditions between soybean nodules and free-living rhizobia.
    Tezuka T; Murayama Y
    Phytochemistry; 2002 Nov; 61(6):637-44. PubMed ID: 12423884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, accumulation and hydrolysis of trehalose during growth of peanut rhizobia in hyperosmotic media.
    Dardanelli MS; González PS; Bueno MA; Ghittoni NE
    J Basic Microbiol; 2000; 40(3):149-56. PubMed ID: 10957956
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trehalose becomes the most abundant non-structural carbohydrate during senescence of soybean nodules.
    Müller J; Boller T; Wiemken A
    J Exp Bot; 2001 May; 52(358):943-7. PubMed ID: 11432911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic Characterization of
    Strodtman KN; Frank S; Stevenson S; Thelen JJ; Emerich DW
    Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30544819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia.
    Streeter JG; Bhagwat A
    Can J Microbiol; 1999 Aug; 45(8):716-21. PubMed ID: 10528404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation.
    Streeter JG
    J Appl Microbiol; 2003; 95(3):484-91. PubMed ID: 12911696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of chlorimuron-ethyl on Bradyrhizobium japonicum and its symbiosis with soybean.
    Zawoznik MS; Tomaro ML
    Pest Manag Sci; 2005 Oct; 61(10):1003-8. PubMed ID: 15920784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reassessment of major products of N2 fixation by bacteroids from soybean root nodules.
    Li Y; Parsons R; Day DA; Bergersen FJ
    Microbiology (Reading); 2002 Jun; 148(Pt 6):1959-1966. PubMed ID: 12055315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylcholine levels in Bradyrhizobium japonicum membranes are critical for an efficient symbiosis with the soybean host plant.
    Minder AC; de Rudder KE; Narberhaus F; Fischer HM; Hennecke H; Geiger O
    Mol Microbiol; 2001 Mar; 39(5):1186-98. PubMed ID: 11251836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New insights on trehalose: a multifunctional molecule.
    Elbein AD; Pan YT; Pastuszak I; Carroll D
    Glycobiology; 2003 Apr; 13(4):17R-27R. PubMed ID: 12626396
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
    Pessi G; Ahrens CH; Rehrauer H; Lindemann A; Hauser F; Fischer HM; Hennecke H
    Mol Plant Microbe Interact; 2007 Nov; 20(11):1353-63. PubMed ID: 17977147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrated proteomics and transcriptomics reference data set provides new insights into the Bradyrhizobium japonicum bacteroid metabolism in soybean root nodules.
    Delmotte N; Ahrens CH; Knief C; Qeli E; Koch M; Fischer HM; Vorholt JA; Hennecke H; Pessi G
    Proteomics; 2010 Apr; 10(7):1391-400. PubMed ID: 20104621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fate of Nodule-Specific Polysaccharide Produced by Bradyrhizobium japonicum Bacteroids.
    Streeter JG; Peters NK; Salminen SO; Pladys D; Zhaohua P
    Plant Physiol; 1995 Mar; 107(3):857-864. PubMed ID: 12228408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced production of trehalose in Escherichia coli by homologous expression of otsBA in the presence of the trehalase inhibitor, validamycin A, at high osmolarity.
    Li H; Su H; Kim SB; Chang YK; Hong SK; Seo YG; Kim CJ
    J Biosci Bioeng; 2012 Feb; 113(2):224-32. PubMed ID: 22036231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrate-dependent N₂O emission from intact soybean nodules via denitrification by Bradyrhizobium japonicum bacteroids.
    Hirayama J; Eda S; Mitsui H; Minamisawa K
    Appl Environ Microbiol; 2011 Dec; 77(24):8787-90. PubMed ID: 22003029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.