BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16751542)

  • 1. Comparison of mechanisms of alkane metabolism under sulfate-reducing conditions among two bacterial isolates and a bacterial consortium.
    Callaghan AV; Gieg LM; Kropp KG; Suflita JM; Young LY
    Appl Environ Microbiol; 2006 Jun; 72(6):4274-82. PubMed ID: 16751542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stable isotopic studies of n-alkane metabolism by a sulfate-reducing bacterial enrichment culture.
    Davidova IA; Gieg LM; Nanny M; Kropp KG; Suflita JM
    Appl Environ Microbiol; 2005 Dec; 71(12):8174-82. PubMed ID: 16332800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Jul; 65(7):2969-76. PubMed ID: 10388691
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial reactions in anaerobic alkane degradation by a sulfate reducer, strain AK-01.
    So CM; Young LY
    Appl Environ Microbiol; 1999 Dec; 65(12):5532-40. PubMed ID: 10584014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3.
    So CM; Phelps CD; Young LY
    Appl Environ Microbiol; 2003 Jul; 69(7):3892-900. PubMed ID: 12839758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic biodegradation of alkanes by enriched consortia under four different reducing conditions.
    So CM; Young LY
    Environ Toxicol Chem; 2001 Mar; 20(3):473-8. PubMed ID: 11349845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture.
    Kropp KG; Davidova IA; Suflita JM
    Appl Environ Microbiol; 2000 Dec; 66(12):5393-8. PubMed ID: 11097919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.
    Callaghan AV; Morris BE; Pereira IA; McInerney MJ; Austin RN; Groves JT; Kukor JJ; Suflita JM; Young LY; Zylstra GJ; Wawrik B
    Environ Microbiol; 2012 Jan; 14(1):101-13. PubMed ID: 21651686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.
    Wilkes H; Buckel W; Golding BT; Rabus R
    J Mol Microbiol Biotechnol; 2016; 26(1-3):138-51. PubMed ID: 26959725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
    Cravo-Laureau C; Grossi V; Raphel D; Matheron R; Hirschler-Réa A
    Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-metabolic conversion of toluene in anaerobic n-alkane-degrading bacteria.
    Rabus R; Jarling R; Lahme S; Kühner S; Heider J; Widdel F; Wilkes H
    Environ Microbiol; 2011 Sep; 13(9):2576-86. PubMed ID: 21880102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions.
    Hasinger M; Scherr KE; Lundaa T; Bräuer L; Zach C; Loibner AP
    J Biotechnol; 2012 Feb; 157(4):490-8. PubMed ID: 22001845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methylpentyl)succinate via C-skeleton rearrangement.
    Wilkes H; Rabus R; Fischer T; Armstroff A; Behrends A; Widdel F
    Arch Microbiol; 2002 Mar; 177(3):235-43. PubMed ID: 11907679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic alkane-degrading strain AK-01 contains two alkylsuccinate synthase genes.
    Callaghan AV; Wawrik B; Ní Chadhain SM; Young LY; Zylstra GJ
    Biochem Biophys Res Commun; 2008 Feb; 366(1):142-8. PubMed ID: 18053803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic oxidation of long-chain n-alkanes by the hyperthermophilic sulfate-reducing archaeon, Archaeoglobus fulgidus.
    Khelifi N; Amin Ali O; Roche P; Grossi V; Brochier-Armanet C; Valette O; Ollivier B; Dolla A; Hirschler-Réa A
    ISME J; 2014 Nov; 8(11):2153-66. PubMed ID: 24763368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic biodegradation of n-hexadecane by a nitrate-reducing consortium.
    Callaghan AV; Tierney M; Phelps CD; Young LY
    Appl Environ Microbiol; 2009 Mar; 75(5):1339-44. PubMed ID: 19114507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V; Cravo-Laureau C; Méou A; Raphel D; Garzino F; Hirschler-Réa A
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and mass spectra of rearrangement bio-signature metabolites of anaerobic alkane degradation via fumarate addition.
    Chen J; Zhou L; Liu YF; Hou ZW; Li W; Mbadinga SM; Zhou J; Yang T; Liu JF; Yang SZ; Wu XL; Gu JD; Mu BZ
    Anal Biochem; 2020 Jul; 600():113746. PubMed ID: 32333904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic hexadecane degradation by a thermophilic Hadarchaeon from Guaymas Basin.
    Benito Merino D; Lipp JS; Borrel G; Boetius A; Wegener G
    ISME J; 2024 Jan; 18(1):. PubMed ID: 38365230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.