BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16751542)

  • 21. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate reducing consortium.
    Zhang X; Sullivan ER; Young LY
    Biodegradation; 2000; 11(2-3):117-24. PubMed ID: 11440239
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses.
    Herath A; Wawrik B; Qin Y; Zhou J; Callaghan AV
    FEMS Microbiol Ecol; 2016 May; 92(5):fiw062. PubMed ID: 27009900
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Potential of hexadecane-utilizing soil-microorganisms for growth on hexadecanol, hexadecanal and hexadecanoic acid as sole sources of carbon and energy.
    Dashti N; Al-Awadhi H; Khanafer M; Abdelghany S; Radwan S
    Chemosphere; 2008 Jan; 70(3):475-9. PubMed ID: 17675208
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Methane as fuel for anaerobic microorganisms.
    Thauer RK; Shima S
    Ann N Y Acad Sci; 2008 Mar; 1125():158-70. PubMed ID: 18096853
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential proteomic analysis of an engineered Streptomyces coelicolor strain reveals metabolic pathways supporting growth on n-hexadecane.
    Gallo G; Lo Piccolo L; Renzone G; La Rosa R; Scaloni A; Quatrini P; Puglia AM
    Appl Microbiol Biotechnol; 2012 Jun; 94(5):1289-301. PubMed ID: 22526801
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of bacterial isolates from industrial wastewater according to probable modes of hexadecane uptake.
    Vasileva-Tonkova E; Galabova D; Stoimenova E; Lalchev Z
    Microbiol Res; 2008; 163(4):481-6. PubMed ID: 16962302
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the metabolism pathway and functional genes of long-chain aliphatic alkane degradation in haloarchaea.
    Kumar S; Zhou J; Li M; Xiang H; Zhao D
    Extremophiles; 2020 Jul; 24(4):475-483. PubMed ID: 32328734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon and hydrogen stable isotope fractionation associated with the anaerobic degradation of propane and butane by marine sulfate-reducing bacteria.
    Jaekel U; Vogt C; Fischer A; Richnow HH; Musat F
    Environ Microbiol; 2014 Jan; 16(1):130-40. PubMed ID: 24028539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic phenanthrene mineralization by a carboxylating sulfate-reducing bacterial enrichment.
    Davidova IA; Gieg LM; Duncan KE; Suflita JM
    ISME J; 2007 Sep; 1(5):436-42. PubMed ID: 18043662
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic benzene degradation by Gram-positive sulfate-reducing bacteria.
    Abu Laban N; Selesi D; Jobelius C; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Jun; 68(3):300-11. PubMed ID: 19416354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metagenomic analysis of an anaerobic alkane-degrading microbial culture: potential hydrocarbon-activating pathways and inferred roles of community members.
    Tan B; Dong X; Sensen CW; Foght J
    Genome; 2013 Oct; 56(10):599-611. PubMed ID: 24237341
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
    Savage KN; Krumholz LR; Gieg LM; Parisi VA; Suflita JM; Allen J; Philp RP; Elshahed MS
    FEMS Microbiol Ecol; 2010 Jun; 72(3):485-95. PubMed ID: 20402777
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A mathematical model of cell growth and alkane degradation in Wadden Sea sediment suspensions.
    Berthe-Corti L; Ebenhöh W
    Biosystems; 1999 Mar; 49(3):161-89. PubMed ID: 10193758
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria.
    Ehrenreich P; Behrends A; Harder J; Widdel F
    Arch Microbiol; 2000 Jan; 173(1):58-64. PubMed ID: 10648105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In situ detection of anaerobic alkane metabolites in subsurface environments.
    Agrawal A; Gieg LM
    Front Microbiol; 2013; 4():140. PubMed ID: 23761789
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial metabolism of long-chain n-alkanes.
    Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB; Throne-Holst M
    Appl Microbiol Biotechnol; 2007 Oct; 76(6):1209-21. PubMed ID: 17673997
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibitory effects and biotransformation potential of ciprofloxacin under anoxic/anaerobic conditions.
    Liu Z; Sun P; Pavlostathis SG; Zhou X; Zhang Y
    Bioresour Technol; 2013 Dec; 150():28-35. PubMed ID: 24140947
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial metabolism of the isoprenoid alkane pristane.
    McKenna EJ; Kallio RE
    Proc Natl Acad Sci U S A; 1971 Jul; 68(7):1552-4. PubMed ID: 4327007
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The diversity of alkane degrading bacteria in the enrichments with deep sea sediment of the South China Sea].
    Liu Z; Shao ZZ
    Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):869-73. PubMed ID: 18062265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.