BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16751542)

  • 41. Hexadecane degradation of Pseudomonas aeruginosa NY3 promoted by glutaric acid.
    Nie H; Nie M; Xiao T; Wang Y; Tian X
    Sci Total Environ; 2017 Jan; 575():1423-1428. PubMed ID: 27717568
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium.
    Higashioka Y; Kojima H; Nakagawa T; Sato S; Fukui M
    Biodegradation; 2009 Jun; 20(3):383-90. PubMed ID: 18987782
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accelerated methanogenesis from aliphatic and aromatic hydrocarbons under iron- and sulfate-reducing conditions.
    Siegert M; Cichocka D; Herrmann S; Gründger F; Feisthauer S; Richnow HH; Springael D; Krüger M
    FEMS Microbiol Lett; 2011 Feb; 315(1):6-16. PubMed ID: 21133990
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [n-Alkane oxidation by propionic acid bacteria].
    Vorob'eva LI; Kraeva NI; Ebringer L; Ol'sinskaia NL
    Mikrobiologiia; 1979; 48(1):33-8. PubMed ID: 423808
    [TBL] [Abstract][Full Text] [Related]  

  • 45. n-Alkane assimilation and tert-butyl alcohol (TBA) oxidation capacity in Mycobacterium austroafricanum strains.
    Lopes Ferreira N; Mathis H; Labbé D; Monot F; Greer CW; Fayolle-Guichard F
    Appl Microbiol Biotechnol; 2007 Jun; 75(4):909-19. PubMed ID: 17347817
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous degradation of phenol and n-hexadecane by Acinetobacter strains.
    Sun JQ; Xu L; Tang YQ; Chen FM; Wu XL
    Bioresour Technol; 2012 Nov; 123():664-8. PubMed ID: 22939600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A bacterial consortium isolated from an Icelandic fumarole displays exceptionally high levels of sulfate reduction and metals resistance.
    Alexandrino M; Macías F; Costa R; Gomes NC; Canário AV; Costa MC
    J Hazard Mater; 2011 Mar; 187(1-3):362-70. PubMed ID: 21296493
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multi-omics association study of hexadecane degradation in haloarchaeal strain Halogranum rubrum RO2-11.
    Huang H; Xie C; Xia Z; Sun Z; Chen Y; Gou M; Tang Y; Cui H; Wu X
    Environ Res; 2024 Jul; 252(Pt 2):118751. PubMed ID: 38522738
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacteria from hydrocarbon seep areas growing on short-chain alkanes.
    Muyzer G; van der Kraan GM
    Trends Microbiol; 2008 Apr; 16(4):138-41. PubMed ID: 18328711
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Anaerobic degradation of the aromatic hydrocarbon biphenyl by a sulfate-reducing enrichment culture.
    Selesi D; Meckenstock RU
    FEMS Microbiol Ecol; 2009 Apr; 68(1):86-93. PubMed ID: 19187215
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial cell production from hexadecane at high temperatures.
    Sukatsch DA; Johnson MJ
    Appl Microbiol; 1972 Mar; 23(3):543-6. PubMed ID: 5021971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
    Meulepas RJ; Jagersma CG; Gieteling J; Buisman CJ; Stams AJ; Lens PN
    Biotechnol Bioeng; 2009 Oct; 104(3):458-70. PubMed ID: 19544305
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Bacterial succession on n-alkanes under the conditions of sulfate reduction].
    Koronelli TV; Komarova TI; Tkebuchava LF
    Prikl Biokhim Mikrobiol; 2002; 38(2):136-9. PubMed ID: 11962208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hexadecane mineralization in oxygen-controlled sediment-seawater cultivations with autochthonous microorganisms.
    Michaelsen M; Hulsch R; Höpner T; Berthe-Corti L
    Appl Environ Microbiol; 1992 Sep; 58(9):3072-7. PubMed ID: 1444421
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat.
    Abed RM; Musat N; Musat F; Mussmann M
    Mar Pollut Bull; 2011 Mar; 62(3):539-46. PubMed ID: 21194714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Alkane degradation under anoxic conditions by a nitrate-reducing bacterium with possible involvement of the electron acceptor in substrate activation.
    Zedelius J; Rabus R; Grundmann O; Werner I; Brodkorb D; Schreiber F; Ehrenreich P; Behrends A; Wilkes H; Kube M; Reinhardt R; Widdel F
    Environ Microbiol Rep; 2011 Feb; 3(1):125-135. PubMed ID: 21837252
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial population dynamics associated with crude-oil biodegradation in diverse soils.
    Hamamura N; Olson SH; Ward DM; Inskeep WP
    Appl Environ Microbiol; 2006 Sep; 72(9):6316-24. PubMed ID: 16957258
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Metabolic pathway for a new strain Pseudomonas synxantha LSH-7': from chemotaxis to uptake of n-hexadecane.
    Meng L; Li H; Bao M; Sun P
    Sci Rep; 2017 Jan; 7():39068. PubMed ID: 28051099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biodegradation of phenanthrene and analysis of degrading cultures in the presence of a model organo-mineral matrix and of a simulated NAPL phase.
    Cavalca L; Rao MA; Bernasconi S; Colombo M; Andreoni V; Gianfreda L
    Biodegradation; 2008 Feb; 19(1):1-13. PubMed ID: 17372704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes.
    Pirnik MP; Atlas RM; Bartha R
    J Bacteriol; 1974 Sep; 119(3):868-78. PubMed ID: 4852318
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.