These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 16751577)

  • 1. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri.
    Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB
    Appl Environ Microbiol; 2006 Jun; 72(6):4497-9. PubMed ID: 16751577
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria.
    Ward RE; Niñonuevo M; Mills DA; Lebrilla CB; German JB
    Mol Nutr Food Res; 2007 Nov; 51(11):1398-405. PubMed ID: 17966141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli.
    Thongaram T; Hoeflinger JL; Chow J; Miller MJ
    J Dairy Sci; 2017 Oct; 100(10):7825-7833. PubMed ID: 28780103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut-associated bifidobacteria.
    Garrido D; Ruiz-Moyano S; Lemay DG; Sela DA; German JB; Mills DA
    Sci Rep; 2015 Sep; 5():13517. PubMed ID: 26337101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bifidobacteria grown on human milk oligosaccharides downregulate the expression of inflammation-related genes in Caco-2 cells.
    Wickramasinghe S; Pacheco AR; Lemay DG; Mills DA
    BMC Microbiol; 2015 Aug; 15():172. PubMed ID: 26303932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides.
    Yoshida E; Sakurama H; Kiyohara M; Nakajima M; Kitaoka M; Ashida H; Hirose J; Katayama T; Yamamoto K; Kumagai H
    Glycobiology; 2012 Mar; 22(3):361-8. PubMed ID: 21926104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve.
    Ruiz-Moyano S; Totten SM; Garrido DA; Smilowitz JT; German JB; Lebrilla CB; Mills DA
    Appl Environ Microbiol; 2013 Oct; 79(19):6040-9. PubMed ID: 23892749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Varied Pathways of Infant Gut-Associated
    Sakanaka M; Gotoh A; Yoshida K; Odamaki T; Koguchi H; Xiao JZ; Kitaoka M; Katayama T
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31888048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oligosaccharides Released from Milk Glycoproteins Are Selective Growth Substrates for Infant-Associated Bifidobacteria.
    Karav S; Le Parc A; Leite Nobrega de Moura Bell JM; Frese SA; Kirmiz N; Block DE; Barile D; Mills DA
    Appl Environ Microbiol; 2016 Jun; 82(12):3622-3630. PubMed ID: 27084007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides.
    Sela DA; Mills DA
    Trends Microbiol; 2010 Jul; 18(7):298-307. PubMed ID: 20409714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Utilization of the Human Milk Oligosaccharides 2'-Fucosyllactose, 3-Fucosyllactose, and Difucosyllactose by Various Probiotic and Pathogenic Bacteria.
    Salli K; Hirvonen J; Siitonen J; Ahonen I; Anglenius H; Maukonen J
    J Agric Food Chem; 2021 Jan; 69(1):170-182. PubMed ID: 33382612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization.
    Thomson P; Medina DA; Garrido D
    Food Microbiol; 2018 Oct; 75():37-46. PubMed ID: 30056961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Fermentation of caprine milk oligosaccharides by bifidobacteria isolated from breast-fed infants.
    Thum C; Roy NC; McNabb WC; Otter DE; Cookson AL
    Gut Microbes; 2015; 6(6):352-63. PubMed ID: 26587678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides.
    Sela DA; Li Y; Lerno L; Wu S; Marcobal AM; German JB; Chen X; Lebrilla CB; Mills DA
    J Biol Chem; 2011 Apr; 286(14):11909-18. PubMed ID: 21288901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria.
    Asakuma S; Hatakeyama E; Urashima T; Yoshida E; Katayama T; Yamamoto K; Kumagai H; Ashida H; Hirose J; Kitaoka M
    J Biol Chem; 2011 Oct; 286(40):34583-92. PubMed ID: 21832085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic mechanisms of prebiotic oligosaccharide metabolism in probiotic microbes.
    Goh YJ; Klaenhammer TR
    Annu Rev Food Sci Technol; 2015; 6():137-56. PubMed ID: 25532597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xylo-oligosaccharides and lactitol promote the growth of Bifidobacterium lactis and Lactobacillus species in pure cultures.
    Mäkeläinen H; Saarinen M; Stowell J; Rautonen N; Ouwehand AC
    Benef Microbes; 2010 Jun; 1(2):139-48. PubMed ID: 21840802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria.
    Kaplan H; Hutkins RW
    Appl Environ Microbiol; 2000 Jun; 66(6):2682-4. PubMed ID: 10831458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human milk oligosaccharide-sharing by a consortium of infant derived Bifidobacterium species.
    Walsh C; Lane JA; van Sinderen D; Hickey RM
    Sci Rep; 2022 Mar; 12(1):4143. PubMed ID: 35264656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable control of
    Reens AL; Cosetta CM; Saur R; Trofimuk O; Brooker SL; Lee ML; Sun AK; McKenzie GJ; Button JE
    Gut Microbes; 2024; 16(1):2304160. PubMed ID: 38235736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.