These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16751880)

  • 1. Writing with molecules on molecular printboards.
    Crespo-Biel O; Jan Ravoo B; Huskens J; Reinhoudt DN
    Dalton Trans; 2006 Jun; (23):2737-41. PubMed ID: 16751880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular microcontact printing and dip-pen nanolithography on molecular printboards.
    Bruinink CM; Nijhuis CA; Péter M; Dordi B; Crespo-Biel O; Auletta T; Mulder A; Schönherr H; Vancso GJ; Huskens J; Reinhoudt DN
    Chemistry; 2005 Jun; 11(13):3988-96. PubMed ID: 15844132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular printboards on silicon oxide: lithographic patterning of cyclodextrin monolayers with multivalent, fluorescent guest molecules.
    Mulder A; Onclin S; Péter M; Hoogenboom JP; Beijleveld H; ter Maat J; García-Parajó MF; Ravoo BJ; Huskens J; van Hulst NF; Reinhoudt DN
    Small; 2005 Feb; 1(2):242-53. PubMed ID: 17193439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular boxes on a molecular printboard: encapsulation of anionic dyes in immobilized dendrimers.
    Onclin S; Huskens J; Ravoo BJ; Reinhoudt DN
    Small; 2005 Aug; 1(8-9):852-7. PubMed ID: 17193539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico engineering of tailored ink-binding ability at molecular printboards.
    Thompson D
    Chemphyschem; 2007 Aug; 8(11):1684-93. PubMed ID: 17600798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlling the supramolecular assembly of redox-active dendrimers at molecular printboards by scanning electrochemical microscopy.
    Nijhuis CA; Sinha JK; Wittstock G; Huskens J; Ravoo BJ; Reinhoudt DN
    Langmuir; 2006 Nov; 22(23):9770-5. PubMed ID: 17073510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular printboards: versatile platforms for the creation and positioning of supramolecular assemblies and materials.
    Ludden MJ; Reinhoudt DN; Huskens J
    Chem Soc Rev; 2006 Nov; 35(11):1122-34. PubMed ID: 17057841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control over binding stoichiometry and specificity in the supramolecular immobilization of cytochrome c on a molecular printboard.
    Ludden MJ; Sinha JK; Wittstock G; Reinhoudt DN; Huskens J
    Org Biomol Chem; 2008 May; 6(9):1553-7. PubMed ID: 18421386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effective concentration of unbound ink anchors at the molecular printboard.
    Thompson D
    J Phys Chem B; 2008 Apr; 112(16):4994-9. PubMed ID: 18380507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed self-assembly of functionalized silica nanoparticles on molecular printboards through multivalent supramolecular interactions.
    Mahalingam V; Onclin S; Péter M; Ravoo BJ; Huskens J; Reinhoudt DN
    Langmuir; 2004 Dec; 20(26):11756-62. PubMed ID: 15595808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct patterning of gold nanoparticles using dip-pen nanolithography.
    Wang WM; Stoltenberg RM; Liu S; Bao Z
    ACS Nano; 2008 Oct; 2(10):2135-42. PubMed ID: 19206460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supramolecular layer-by-layer assembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions.
    Crespo-Biel O; Dordi B; Reinhoudt DN; Huskens J
    J Am Chem Soc; 2005 May; 127(20):7594-600. PubMed ID: 15898811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling competitive guest binding to beta-cyclodextrin molecular printboards.
    Thompson D; Larsson JA
    J Phys Chem B; 2006 Aug; 110(33):16640-5. PubMed ID: 16913800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular assembly of cyclodextrin-based nanoparticles on solid surfaces for gene delivery.
    Park IK; von Recum HA; Jiang S; Pun SH
    Langmuir; 2006 Sep; 22(20):8478-84. PubMed ID: 16981766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein immobilization on Ni(II) ion patterns prepared by microcontact printing and dip-pen nanolithography.
    Wu CC; Reinhoudt DN; Otto C; Velders AH; Subramaniam V
    ACS Nano; 2010 Feb; 4(2):1083-91. PubMed ID: 20104881
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multivalent binding of small guest molecules and proteins to molecular printboards inside microchannels.
    Ludden MJ; Ling XY; Gang T; Bula WP; Gardeniers HJ; Reinhoudt DN; Huskens J
    Chemistry; 2008; 14(1):136-42. PubMed ID: 18000928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coarse-grained molecular dynamics simulations of nanopatterning with multivalent inks.
    Cieplak M; Thompson D
    J Chem Phys; 2008 Jun; 128(23):234906. PubMed ID: 18570527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy balance predicates dendrimer binding multivalency at molecular printboards.
    Thompson D
    Langmuir; 2007 Jul; 23(16):8441-51. PubMed ID: 17608506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multivalent dendrimers at molecular printboards: influence of dendrimer structure on binding strength and stoichiometry and their electrochemically induced desorption.
    Nijhuis CA; Yu F; Knoll W; Huskens J; Reinhoudt DN
    Langmuir; 2005 Aug; 21(17):7866-76. PubMed ID: 16089394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly of bionanostructures onto beta-cyclodextrin molecular printboards for antibody recognition and lymphocyte cell counting.
    Ludden MJ; Li X; Greve J; van Amerongen A; Escalante M; Subramaniam V; Reinhoudt DN; Huskens J
    J Am Chem Soc; 2008 Jun; 130(22):6964-73. PubMed ID: 18461928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.