These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Presynaptic calcium signals during neurotransmitter release: detection with fluorescent indicators and other calcium chelators. Augustine GJ; Adler EM; Charlton MP; Hans M; Swandulla D; Zipser K J Physiol Paris; 1992; 86(1-3):129-34. PubMed ID: 1364192 [TBL] [Abstract][Full Text] [Related]
3. Coupling of L-type calcium channels to neurotransmitter release at mouse motor nerve terminals. Urbano FJ; Depetris RS; Uchitel OD Pflugers Arch; 2001 Mar; 441(6):824-31. PubMed ID: 11316267 [TBL] [Abstract][Full Text] [Related]
4. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices. Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186 [TBL] [Abstract][Full Text] [Related]
5. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. Rozov A; Burnashev N; Sakmann B; Neher E J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060 [TBL] [Abstract][Full Text] [Related]
6. Inhibitors of calcium buffering depress evoked transmitter release at the squid giant synapse. Adams DJ; Takeda K; Umbach JA J Physiol; 1985 Dec; 369():145-59. PubMed ID: 2419546 [TBL] [Abstract][Full Text] [Related]
7. Transmitter release modulation in nerve terminals of rat neocortical pyramidal cells by intracellular calcium buffers. Ohana O; Sakmann B J Physiol; 1998 Nov; 513 ( Pt 1)(Pt 1):135-48. PubMed ID: 9782165 [TBL] [Abstract][Full Text] [Related]
8. Mechanisms and effects of intracellular calcium buffering on neuronal survival in organotypic hippocampal cultures exposed to anoxia/aglycemia or to excitotoxins. Abdel-Hamid KM; Tymianski M J Neurosci; 1997 May; 17(10):3538-53. PubMed ID: 9133378 [TBL] [Abstract][Full Text] [Related]
9. Diffusion barriers limit the effect of mobile calcium buffers on exocytosis of large dense cored vesicles. Kits KS; de Vlieger TA; Kooi BW; Mansvelder HD Biophys J; 1999 Mar; 76(3):1693-705. PubMed ID: 10049349 [TBL] [Abstract][Full Text] [Related]
10. Rapid chelation of calcium entering isolated rat brain nerve terminals during stimulation inhibits neurotransmitter release. Nichols RA; Suplick GR Neurosci Lett; 1996 Jun; 211(2):135-7. PubMed ID: 8830863 [TBL] [Abstract][Full Text] [Related]
11. Calcium released by photolysis of DM-nitrophen stimulates transmitter release at squid giant synapse. Delaney KR; Zucker RS J Physiol; 1990 Jul; 426():473-98. PubMed ID: 1977904 [TBL] [Abstract][Full Text] [Related]
12. Presynaptic calcium and serotonin-mediated enhancement of transmitter release at crayfish neuromuscular junction. Delaney K; Tank DW; Zucker RS J Neurosci; 1991 Sep; 11(9):2631-43. PubMed ID: 1679119 [TBL] [Abstract][Full Text] [Related]
13. Presynaptic nanodomains: a tale of two synapses. Wang LY; Augustine GJ Front Cell Neurosci; 2014; 8():455. PubMed ID: 25674049 [TBL] [Abstract][Full Text] [Related]
14. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics. Spigelman I; Tymianski M; Wallace CM; Carlen PL; Velumian AA Neuroscience; 1996 Nov; 75(2):559-72. PubMed ID: 8931019 [TBL] [Abstract][Full Text] [Related]
15. Properties of neuroprotective cell-permeant Ca2+ chelators: effects on [Ca2+]i and glutamate neurotoxicity in vitro. Tymianski M; Charlton MP; Carlen PL; Tator CH J Neurophysiol; 1994 Oct; 72(4):1973-92. PubMed ID: 7823112 [TBL] [Abstract][Full Text] [Related]
16. Facilitatory and inhibitory transmitters modulate spontaneous transmitter release at cultured Aplysia sensorimotor synapses. Dale N; Kandel ER J Physiol; 1990 Feb; 421():203-22. PubMed ID: 1971854 [TBL] [Abstract][Full Text] [Related]
17. Role of calcium-activated potassium channels in transmitter release at the squid giant synapse. Augustine GJ; Charlton MP; Horn R J Physiol; 1988 Apr; 398():149-64. PubMed ID: 2455797 [TBL] [Abstract][Full Text] [Related]
18. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. Augustine GJ J Physiol; 1990 Dec; 431():343-64. PubMed ID: 1983120 [TBL] [Abstract][Full Text] [Related]
19. Presynaptic calcium dynamics at the frog retinotectal synapse. Feller MB; Delaney KR; Tank DW J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232 [TBL] [Abstract][Full Text] [Related]
20. Differential Ca2+-dependence of transmitter release mediated by P/Q- and N-type calcium channels at neonatal rat neuromuscular junctions. Rosato-Siri MD; Piriz J; Tropper BA; Uchitel OD Eur J Neurosci; 2002 Jun; 15(12):1874-80. PubMed ID: 12099893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]