These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16752769)

  • 1. Effects of velocity gradient and mixing time on particle growth in a rapid mixing tank.
    Park SM; Jun HB; Jung MS; Koo HM
    Water Sci Technol; 2006; 53(7):95-102. PubMed ID: 16752769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Flocculation characteristics and mechanism of a conical fluidized-bed reactor].
    Zhou DD; Zhao H; Li Y; Guo LB; Wang T; Dong SS
    Huan Jing Ke Xue; 2010 Apr; 31(4):1002-7. PubMed ID: 20527183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing phosphate removal from wastewater by using polyelectrolytes and clay injection.
    Ozacar M; Sengil IA
    J Hazard Mater; 2003 Jun; 100(1-3):131-46. PubMed ID: 12835018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous removal of multi-pollutants in an intimate integrated flocculation-adsorption fluidized bed.
    Zhou D; Xu Z; Wang Y; Wang J; Hou D; Dong S
    Environ Sci Pollut Res Int; 2015 Mar; 22(5):3794-802. PubMed ID: 25266059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical and chemical processes for removing suspended solids and phosphorus from liquid swine manure.
    Zhu K; El-Din MG; Moawad AK; Bromley D
    Environ Technol; 2004 Oct; 25(10):1177-87. PubMed ID: 15551832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Particle count and size alteration for membrane fouling reduction in non-conventional water filtration.
    Adin A
    Water Sci Technol; 2004; 50(12):273-8. PubMed ID: 15686031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of rapid-mixing conditions on the evolution of micro-flocs to final aggregates during two-stage alum addition.
    Du P; Li X; Yang Y; Fan X; Zhang T; Wang N; Li H; Ji S; Zhou Z
    Environ Technol; 2021 Aug; 42(20):3122-3131. PubMed ID: 31990636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Re-use of water treatment works sludge to enhance particulate pollutant removal from sewage.
    Guan XH; Chen GH; Shang C
    Water Res; 2005 Sep; 39(15):3433-40. PubMed ID: 16095658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of addition sequence and rapid mixing conditions on use of dual coagulants.
    Kim SH; Kim HK; Moon BH; Seo GT; Yoon CH
    Water Sci Technol; 2006; 53(7):87-94. PubMed ID: 16752768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot-scale fluoride-containing wastewater treatment by the ballasted flocculation process.
    Wang BY; Chen ZL; Zhu J; Shen JM; Han Y
    Water Sci Technol; 2013; 68(1):134-43. PubMed ID: 23823549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An evaluation procedure for flocculation of coal preparation plant tailings.
    Sabah E; Cengiz I
    Water Res; 2004 Mar; 38(6):1542-9. PubMed ID: 15016531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breakage and regrowth of flocs formed by sweep coagulation using additional coagulant of poly aluminium chloride and non-ionic polyacrylamide.
    Nan J; Yao M; Chen T; Li S; Wang Z; Feng G
    Environ Sci Pollut Res Int; 2016 Aug; 23(16):16336-48. PubMed ID: 27155836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The practical influence of rapid mixing on coagulation in a full-scale water treatment plant.
    Allerdings D; Förster G; Vasyukova E; Uhl W
    Water Sci Technol; 2015; 71(4):566-71. PubMed ID: 25746649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring floc formation and breakage.
    Gregory J
    Water Sci Technol; 2004; 50(12):163-70. PubMed ID: 15686017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ballasted flocs in water treatment using microscopy.
    Lapointe M; Barbeau B
    Water Res; 2016 Mar; 90():119-127. PubMed ID: 26724446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coagulation/flocculation of dye-containing solutions using polyaluminium chloride and alum.
    Zonoozi MH; Moghaddam MR; Arami M
    Water Sci Technol; 2009; 59(7):1343-51. PubMed ID: 19381000
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in removal rates of virgin/decayed microplastics, viruses, activated carbon, and kaolin/montmorillonite clay particles by coagulation, flocculation, sedimentation, and rapid sand filtration during water treatment.
    Nakazawa Y; Abe T; Matsui Y; Shinno K; Kobayashi S; Shirasaki N; Matsushita T
    Water Res; 2021 Sep; 203():117550. PubMed ID: 34418646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for flocculation in glacier-fed Lillooet Lake, British Columbia.
    Hodder KR; Gilbert R
    Water Res; 2007 Jun; 41(12):2748-62. PubMed ID: 17445861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Breakage and re-growth of flocs formed by charge neutralization using alum and polyDADMAC.
    Yu W; Gregory J; Campos LC
    Water Res; 2010 Jul; 44(13):3959-65. PubMed ID: 20494394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature effects on flocculation, using different coagulants.
    Fitzpatrick CS; Fradin E; Gregory J
    Water Sci Technol; 2004; 50(12):171-5. PubMed ID: 15686018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.