These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 16752784)

  • 41. Influence of COM-peptides/proteins on the properties of flocs formed at different shear rates.
    Filipenska M; Vasatova P; Pivokonska L; Cermakova L; Gonzalez-Torres A; Henderson RK; Naceradska J; Pivokonsky M
    J Environ Sci (China); 2019 Jun; 80():116-127. PubMed ID: 30952329
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of floc strength by morphological analysis and PDA online monitoring.
    Jin PK; Wang XC; Chai H
    Water Sci Technol; 2007; 56(10):117-24. PubMed ID: 18048984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of second coagulant addition on coagulation efficiency, floc properties and residual Al for humic acid treatment by Al13 polymer and polyaluminum chloride (PACl).
    Xu W; Gao B; Wang Y; Yue Q; Ren H
    J Hazard Mater; 2012 May; 215-216():129-37. PubMed ID: 22410719
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Properties of flocs produced by water treatment coagulants.
    Gregory J; Dupon V
    Water Sci Technol; 2001; 44(10):231-6. PubMed ID: 11794659
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of heating method on the flocculation process using thermosensitive polymer.
    Lemanowicz M; Kuźnik W; Gibas M; Dzido G; Gierczycki A
    Water Res; 2012 Sep; 46(13):4091-8. PubMed ID: 22658925
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Strength of natural soil flocs.
    Kobayashi M
    Water Res; 2005 Sep; 39(14):3273-8. PubMed ID: 16009394
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Influence of polymer charge on the shear yield stress of silica aggregated with adsorbed cationic polymers.
    Zhou Y; Yu H; Wanless EJ; Jameson GJ; Franks GV
    J Colloid Interface Sci; 2009 Aug; 336(2):533-43. PubMed ID: 19414185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Characteristics of flocs formed by polymer-only coagulation in water treatment and their impacts on the performance of downstream membrane separation.
    Maeng SK; Timmes TC; Kim HC
    Environ Technol; 2017 Oct; 38(20):2601-2610. PubMed ID: 27937736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The impact of pH on floc structure characteristic of polyferric chloride in a low DOC and high alkalinity surface water treatment.
    Cao B; Gao B; Liu X; Wang M; Yang Z; Yue Q
    Water Res; 2011 Nov; 45(18):6181-8. PubMed ID: 21959092
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of Anionic and Cationic Pulp-Based Flocculants With Diverse Lignin Contents for Application in Effluent Treatment From the Textile Industry: Flocculation Monitoring.
    Grenda K; Gamelas JAF; Arnold J; Cayre OJ; Rasteiro MG
    Front Chem; 2020; 8():5. PubMed ID: 32083051
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis and application of a quaternary phosphonium polymer coagulant to avoid N-nitrosamine formation.
    Zeng T; Pignatello JJ; Li RJ; Mitch WA
    Environ Sci Technol; 2014 Nov; 48(22):13392-401. PubMed ID: 25322258
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Floc formation and growth mechanism during magnesium hydroxide and polyacrylamide coagulation process for reactive orange removal.
    Zhao J; Li B; Wang A; Ge W; Li W
    Environ Technol; 2022 Jan; 43(3):424-430. PubMed ID: 32633211
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Experimental and numerical characterization of floc morphology: role of changing hydraulic retention time under flocculation mechanisms.
    Nan J; Yao M; Chen T; Wang Z; Li Q; Zhan D
    Environ Sci Pollut Res Int; 2016 Feb; 23(4):3596-608. PubMed ID: 26490940
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evaluation of the flocculation and de-flocculation performance and mechanism of polymer flocculants.
    Ponou J; Ide T; Suzuki A; Tsuji H; Wang LP; Dodbiba G; Fujita T
    Water Sci Technol; 2014; 69(6):1249-58. PubMed ID: 24647191
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates.
    Murujew O; Geoffroy J; Fournie E; Socionovo Gioacchini E; Wilson A; Vale P; Jefferson B; Pidou M
    Water Res; 2020 Mar; 170():115346. PubMed ID: 31801097
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cationic polyelectrolyte induced separation of some inorganic contaminants and their mixture (zirconium silicate, kaolin, K-feldspar, zinc oxide) as well as of the paraffin oil from water.
    Ghimici L
    J Environ Manage; 2016 Mar; 169():1-7. PubMed ID: 26716571
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Settling velocities of multifractal flocs formed in chemical coagulation process.
    Vahedi A; Gorczyca B
    Water Res; 2014 Apr; 53():322-8. PubMed ID: 24530551
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Magnetic flocculants synthesized by Fe
    Ma J; Fu X; Jiang L; Zhu G; Shi J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25955-25966. PubMed ID: 29968210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Flocculation kinetics mechanism and floc formation prepared by poly aluminum chloride coupled with polyacrylamide for ship ballast water.
    Zhou Z; Liu S; Jia L
    Water Sci Technol; 2016; 74(1):57-64. PubMed ID: 27386983
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predicting the settling velocity of flocs formed in water treatment using multiple fractal dimensions.
    Vahedi A; Gorczyca B
    Water Res; 2012 Sep; 46(13):4188-94. PubMed ID: 22673348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.