BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 16752903)

  • 1. 13C and 15N isotope effects for conversion of L-dihydroorotate to N-carbamyl-L-aspartate using dihydroorotase from hamster and Bacillus caldolyticus.
    Anderson MA; Cleland WW; Huang DT; Chan C; Shojaei M; Christopherson RI
    Biochemistry; 2006 Jun; 45(23):7132-9. PubMed ID: 16752903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamic analysis of catalysis by the dihydroorotases from hamster and Bacillus caldolyticus, as compared with the uncatalyzed reaction.
    Huang DT; Kaplan J; Menz RI; Katis VL; Wake RG; Zhao F; Wolfenden R; Christopherson RI
    Biochemistry; 2006 Jul; 45(27):8275-83. PubMed ID: 16819826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the dihydroorotase reaction.
    Porter TN; Li Y; Raushel FM
    Biochemistry; 2004 Dec; 43(51):16285-92. PubMed ID: 15610022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and structural analysis of mutant Escherichia coli dihydroorotases: a flexible loop stabilizes the transition state.
    Lee M; Maher MJ; Christopherson RI; Guss JM
    Biochemistry; 2007 Sep; 46(37):10538-50. PubMed ID: 17711307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the T109S mutant of Escherichia coli dihydroorotase complexed with the inhibitor 5-fluoroorotate: catalytic activity is reflected by the crystal form.
    Lee M; Maher MJ; Guss JM
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2007 Mar; 63(Pt 3):154-61. PubMed ID: 17329804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits.
    Lee M; Chan CW; Mitchell Guss J; Christopherson RI; Maher MJ
    J Mol Biol; 2005 May; 348(3):523-33. PubMed ID: 15826651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The overall synthesis of L-5,6-dihydroorotate by multienzymatic protein pyr1-3 from hamster cells. Kinetic studies, substrate channeling, and the effects of inhibitors.
    Christopherson RI; Jones ME
    J Biol Chem; 1980 Dec; 255(23):11381-95. PubMed ID: 6108323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of isotope effects to determine enzyme mechanisms.
    Cleland WW
    Arch Biochem Biophys; 2005 Jan; 433(1):2-12. PubMed ID: 15581561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the mechanism of nitrogen transfer in Escherichia coli asparagine synthetase by using heavy atom isotope effects.
    Stoker PW; O'Leary MH; Boehlein SK; Schuster SM; Richards NG
    Biochemistry; 1996 Mar; 35(9):3024-30. PubMed ID: 8608141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures of ligand-free and inhibitor complexes of dihydroorotase from Escherichia coli: implications for loop movement in inhibitor design.
    Lee M; Chan CW; Graham SC; Christopherson RI; Guss JM; Maher MJ
    J Mol Biol; 2007 Jul; 370(5):812-25. PubMed ID: 17550785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reaction catalyzed by Escherichia coli aspartate aminotransferase has multiple partially rate-determining steps, while that catalyzed by the Y225F mutant is dominated by ketimine hydrolysis.
    Goldberg JM; Kirsch JF
    Biochemistry; 1996 Apr; 35(16):5280-91. PubMed ID: 8611515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 2H, 13C, and 15N kinetic isotope effects on the reaction of the ammonia-rescued K258A mutant of aspartate aminotransferase.
    Wright SK; Rishavy MA; Cleland WW
    Biochemistry; 2003 Jul; 42(27):8369-76. PubMed ID: 12846586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrimidine biosynthesis in parasitic protozoa: purification of a monofunctional dihydroorotase from Plasmodium berghei and Crithidia fasciculata.
    Krungkrai J; Cerami A; Henderson GB
    Biochemistry; 1990 Jul; 29(26):6270-5. PubMed ID: 1976382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An oxocarbenium-ion intermediate of a ribozyme reaction indicated by kinetic isotope effects.
    Unrau PJ; Bartel DP
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15393-7. PubMed ID: 14668444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope effects in isotope-exchange reactions: evidence for a large 12C/13C kinetic isotope effect in the gas phase.
    de Petris G; Troiani A
    J Phys Chem A; 2008 Mar; 112(12):2507-10. PubMed ID: 18318518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of flavin reduction in class 2 dihydroorotate dehydrogenases.
    Fagan RL; Nelson MN; Pagano PM; Palfey BA
    Biochemistry; 2006 Dec; 45(50):14926-32. PubMed ID: 17154530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assay of Escherichia coli dihydroorotase with enantiomeric substrate: practical preparation of carbamyl L-aspartate and high-performance liquid chromatography analysis of catalysis product.
    Daniel R; Kokel B; Caminade E; Martel A; Le Goffic F
    Anal Biochem; 1996 Aug; 239(2):130-5. PubMed ID: 8811890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular insertion of an N,N-heterocyclic carbene into a nonacidic C-H bond: Kinetics, mechanism and catalysis by (K-HMDS)2 (HMDS = Hexamethyldisilazide).
    Lloyd-Jones GC; Alder RW; Owen-Smith GJ
    Chemistry; 2006 Jul; 12(20):5361-75. PubMed ID: 16673429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.