BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 16753570)

  • 1. Two flagellar genes, AGG2 and AGG3, mediate orientation to light in Chlamydomonas.
    Iomini C; Li L; Mo W; Dutcher SK; Piperno G
    Curr Biol; 2006 Jun; 16(11):1147-53. PubMed ID: 16753570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion.
    Tam LW; Lefebvre PA
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):197-212. PubMed ID: 11977094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion.
    Fujiu K; Nakayama Y; Yanagisawa A; Sokabe M; Yoshimura K
    Curr Biol; 2009 Jan; 19(2):133-9. PubMed ID: 19167228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bld1 mutation identifies the Chlamydomonas osm-6 homolog as a gene required for flagellar assembly.
    Brazelton WJ; Amundsen CD; Silflow CD; Lefebvre PA
    Curr Biol; 2001 Oct; 11(20):1591-4. PubMed ID: 11676919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of isolated chlamydomonas centrioles reveals orthologs of ciliary-disease genes.
    Keller LC; Romijn EP; Zamora I; Yates JR; Marshall WF
    Curr Biol; 2005 Jun; 15(12):1090-8. PubMed ID: 15964273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane protein SMP-1 is required for normal flagellum function in Leishmania.
    Tull D; Naderer T; Spurck T; Mertens HD; Heng J; McFadden GI; Gooley PR; McConville MJ
    J Cell Sci; 2010 Feb; 123(Pt 4):544-54. PubMed ID: 20086045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel subunit of axonemal dynein conserved among lower and higher eukaryotes.
    Yamamoto R; Yanagisawa HA; Yagi T; Kamiya R
    FEBS Lett; 2006 Nov; 580(27):6357-60. PubMed ID: 17094970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of flagellar length in Chlamydomonas.
    Tuxhorn J; Daise T; Dentler WL
    Cell Motil Cytoskeleton; 1998; 40(2):133-46. PubMed ID: 9634211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A healthy understanding of intraflagellar transport.
    Sloboda RD
    Cell Motil Cytoskeleton; 2002 May; 52(1):1-8. PubMed ID: 11977078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of a novel Chlamydomonas mutant to demonstrate that flagellar glycoprotein movements are necessary for the expression of gliding motility.
    Bloodgood RA; Salomonsky NL
    Cell Motil Cytoskeleton; 1989; 13(1):1-8. PubMed ID: 2731235
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar photoresponses of ptx1, a nonphototactic mutant of Chlamydomonas.
    Rüffer U; Nultsch W
    Cell Motil Cytoskeleton; 1997; 37(2):111-9. PubMed ID: 9186008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation.
    Koblenz B; Schoppmeier J; Grunow A; Lechtreck KF
    J Cell Sci; 2003 Jul; 116(Pt 13):2635-46. PubMed ID: 12746491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stuck in reverse: loss of LC1 in Trypanosoma brucei disrupts outer dynein arms and leads to reverse flagellar beat and backward movement.
    Baron DM; Kabututu ZP; Hill KL
    J Cell Sci; 2007 May; 120(Pt 9):1513-20. PubMed ID: 17405810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein phosphorylation is a key event of flagellar disassembly revealed by analysis of flagellar phosphoproteins during flagellar shortening in Chlamydomonas.
    Pan J; Naumann-Busch B; Wang L; Specht M; Scholz M; Trompelt K; Hippler M
    J Proteome Res; 2011 Aug; 10(8):3830-9. PubMed ID: 21663328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GFP as a tool for the analysis of proteins in the flagellar basal apparatus of Chlamydomonas.
    Schoppmeier J; Mages W; Lechtreck KF
    Cell Motil Cytoskeleton; 2005 Aug; 61(4):189-200. PubMed ID: 15940689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella.
    Baron DM; Ralston KS; Kabututu ZP; Hill KL
    J Cell Sci; 2007 Feb; 120(Pt 3):478-91. PubMed ID: 17227795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Vfl1 Protein in Chlamydomonas localizes in a rotationally asymmetric pattern at the distal ends of the basal bodies.
    Silflow CD; LaVoie M; Tam LW; Tousey S; Sanders M; Wu W; Borodovsky M; Lefebvre PA
    J Cell Biol; 2001 Apr; 153(1):63-74. PubMed ID: 11285274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flagellum elongation is required for correct structure, orientation and function of the flagellar pocket in Trypanosoma brucei.
    Absalon S; Blisnick T; Bonhivers M; Kohl L; Cayet N; Toutirais G; Buisson J; Robinson D; Bastin P
    J Cell Sci; 2008 Nov; 121(Pt 22):3704-16. PubMed ID: 18940910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas.
    Falciatore A; Merendino L; Barneche F; Ceol M; Meskauskiene R; Apel K; Rochaix JD
    Genes Dev; 2005 Jan; 19(1):176-87. PubMed ID: 15630026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time observation of Ca2+-induced basal body reorientation in Chlamydomonas.
    Hayashi M; Yagi T; Yoshimura K; Kamiya R
    Cell Motil Cytoskeleton; 1998; 41(1):49-56. PubMed ID: 9744298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.