BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

480 related articles for article (PubMed ID: 16753578)

  • 1. GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha.
    Lerin C; Rodgers JT; Kalume DE; Kim SH; Pandey A; Puigserver P
    Cell Metab; 2006 Jun; 3(6):429-38. PubMed ID: 16753578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAT in the HAT: catabolic inhibition by the histone acetyltransferase GCN5.
    Liu Y; Montminy M
    Cell Metab; 2006 Jun; 3(6):387-8. PubMed ID: 16753572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epigenetic modulation of PGC-1α activity by GCN5 inhibitors: WO2010007085.
    Carradori S; Secci D; Mai A
    Expert Opin Ther Pat; 2011 Oct; 21(10):1651-6. PubMed ID: 21756203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator.
    Tavares CD; Sharabi K; Dominy JE; Lee Y; Isasa M; Orozco JM; Jedrychowski MP; Kamenecka TM; Griffin PR; Gygi SP; Puigserver P
    J Biol Chem; 2016 May; 291(20):10635-45. PubMed ID: 27022023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis.
    Sakai M; Matsumoto M; Tujimura T; Yongheng C; Noguchi T; Inagaki K; Inoue H; Hosooka T; Takazawa K; Kido Y; Yasuda K; Hiramatsu R; Matsuki Y; Kasuga M
    Nat Med; 2012 Mar; 18(4):612-7. PubMed ID: 22426420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis.
    Dominy JE; Lee Y; Jedrychowski MP; Chim H; Jurczak MJ; Camporez JP; Ruan HB; Feldman J; Pierce K; Mostoslavsky R; Denu JM; Clish CB; Yang X; Shulman GI; Gygi SP; Puigserver P
    Mol Cell; 2012 Dec; 48(6):900-13. PubMed ID: 23142079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha.
    Gerhart-Hines Z; Rodgers JT; Bare O; Lerin C; Kim SH; Mostoslavsky R; Alt FW; Wu Z; Puigserver P
    EMBO J; 2007 Apr; 26(7):1913-23. PubMed ID: 17347648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation.
    Kelly TJ; Lerin C; Haas W; Gygi SP; Puigserver P
    J Biol Chem; 2009 Jul; 284(30):19945-52. PubMed ID: 19491097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SMILE transcriptional corepressor inhibits cAMP response element-binding protein (CREB)-mediated transactivation of gluconeogenic genes.
    Lee JM; Han HS; Jung YS; Harris RA; Koo SH; Choi HS
    J Biol Chem; 2018 Aug; 293(34):13125-13133. PubMed ID: 29950523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolic regulator PGC-1α links hepatitis C virus infection to hepatic insulin resistance.
    Shlomai A; Rechtman MM; Burdelova EO; Zilberberg A; Hoffman S; Solar I; Fishman S; Halpern Z; Sklan EH
    J Hepatol; 2012 Oct; 57(4):867-73. PubMed ID: 22732512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PCAF improves glucose homeostasis by suppressing the gluconeogenic activity of PGC-1α.
    Sun C; Wang M; Liu X; Luo L; Li K; Zhang S; Wang Y; Yang Y; Ding F; Gu X
    Cell Rep; 2014 Dec; 9(6):2250-62. PubMed ID: 25497092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyclin D1-Cdk4 controls glucose metabolism independently of cell cycle progression.
    Lee Y; Dominy JE; Choi YJ; Jurczak M; Tolliday N; Camporez JP; Chim H; Lim JH; Ruan HB; Yang X; Vazquez F; Sicinski P; Shulman GI; Puigserver P
    Nature; 2014 Jun; 510(7506):547-51. PubMed ID: 24870244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of proliferator-activated receptor gamma coactivator-1alpha in the fatty-acid-dependent transcriptional control of interleukin-10 in hepatic cells of rodents.
    Morari J; Torsoni AS; Anhê GF; Roman EA; Cintra DE; Ward LS; Bordin S; Velloso LA
    Metabolism; 2010 Feb; 59(2):215-23. PubMed ID: 19766270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TNF-alpha reduces PGC-1alpha expression through NF-kappaB and p38 MAPK leading to increased glucose oxidation in a human cardiac cell model.
    Palomer X; Alvarez-Guardia D; Rodríguez-Calvo R; Coll T; Laguna JC; Davidson MM; Chan TO; Feldman AM; Vázquez-Carrera M
    Cardiovasc Res; 2009 Mar; 81(4):703-12. PubMed ID: 19038972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The p65 subunit of NF-kappaB binds to PGC-1alpha, linking inflammation and metabolic disturbances in cardiac cells.
    Alvarez-Guardia D; Palomer X; Coll T; Davidson MM; Chan TO; Feldman AM; Laguna JC; Vázquez-Carrera M
    Cardiovasc Res; 2010 Aug; 87(3):449-58. PubMed ID: 20211864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}.
    Coste A; Louet JF; Lagouge M; Lerin C; Antal MC; Meziane H; Schoonjans K; Puigserver P; O'Malley BW; Auwerx J
    Proc Natl Acad Sci U S A; 2008 Nov; 105(44):17187-92. PubMed ID: 18957541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha)-deficient mice.
    Burgess SC; Leone TC; Wende AR; Croce MA; Chen Z; Sherry AD; Malloy CR; Finck BN
    J Biol Chem; 2006 Jul; 281(28):19000-8. PubMed ID: 16670093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand-dependent coactivation of the human bile acid receptor FXR by the peroxisome proliferator-activated receptor gamma coactivator-1alpha.
    Savkur RS; Thomas JS; Bramlett KS; Gao Y; Michael LF; Burris TP
    J Pharmacol Exp Ther; 2005 Jan; 312(1):170-8. PubMed ID: 15329387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The GCN5-CITED2-PKA signalling module controls hepatic glucose metabolism through a cAMP-induced substrate switch.
    Sakai M; Tujimura-Hayakawa T; Yagi T; Yano H; Mitsushima M; Unoki-Kubota H; Kaburagi Y; Inoue H; Kido Y; Kasuga M; Matsumoto M
    Nat Commun; 2016 Nov; 7():13147. PubMed ID: 27874008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GCN5 acetyltransferase in cellular energetic and metabolic processes.
    Mutlu B; Puigserver P
    Biochim Biophys Acta Gene Regul Mech; 2021 Feb; 1864(2):194626. PubMed ID: 32827753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.